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Abstract: The promising photosensitizing properties of hypericin, a substituted phenanthro-
perylene quinone naturally found in Saint John’s wort, has led to the proposal that it can be
utilized in photodynamic therapy. Structurally modified derivatives are at the present time being
investigated to generate a more effective hypericin photosensitizer. Neither the detailed
mechanism behind the powerful action of hypericin, arising as a result of light excitation, nor
the intracellular localization and transportation is still fully understood. In the present work,
molecular dynamics simulations have been performed to study the properties and the permeability
of hypericin and modifications thereof, substituted with one or four bromine atoms, in a
dipalmitoylphosphatidylcholine lipid membrane. The molecules were found to accumulate in the
most dense region of the lipids due to competing interactions with the hydrophobic lipid interior
and the polar aqueous environment. This was confirmed by analyzing the radial distribution
functions and by the density profiles of the system components. Calculated free energy profiles
display large negative changes in free energy for the transport process of the molecules into
the lipids, which also support this finding. Permeability coefficients show overall fastest diffusion
in the membrane system for hypericin containing one bromine.

1. Introduction

1.1. Properties of Hypericin. Hypericin (Figure 1) is a
phenanthroperylene quinone substituted with hydroxyl and
alkyl groups that was first isolated from Saint John’s wort
(Hypericum perforatum) in 1911.1 However, long before that,
this plant was used in therapy as an antidepressant and in
wound healing. More recently it has been shown that
hypericin possesses toxicity against viruses such as hepatitis

B2, herpes,3,4 and human immunodeficiency virus (HIV).3,5-7

The molecule also displays antitumor activity, demonstrated
both in vitro8-10 and in vivo.11-15 Both the antiviral and
antitumor properties have been observed in the presence of
light, and the chromophoric system along with the hydroxyl
and alkyl substitution makes the molecule an efficient
photosensitizer. This implies that the molecule might be used
in photodynamic therapy (PDT), a three-component method
in which a combination of light, administrated drug (a
photosensitizer), and oxygen is required. PDT was first used
in the 1970s and is now a promising treatment method of
cancer and viral diseases. Tumors that are possible targets
of this kind of therapy need to be more or less superficially
located, either in the skin tissue or close beneath, to enable
light penetration. Tumors located in cavities, such as the
sinuses or stomach, are also treated using directed light.
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Örebro University.
‡ Modelling and Simulation Research Center; Örebro University.
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Hypericin has a high ability to generate singlet oxygen
and other reactive oxygen species (ROS) when irradiated
by light. The quantum yield for singlet oxygen formation
was at first estimated to be as high as 0.73,17,18 but the
number has later been revised to be as low as 0.36 in ethanol
and to be less than 0.02 in water.19 In liposomes, the quantum
yields have been measured to be 0.3520 and 0.43.21 Given
that these quantum yields are too low to explain the strong
photodynamic action of the molecule, it can be concluded
that there must be some additional mechanism involved.

Brominated hypericin at some of the positions (denoted
with I-IV in Figure 1) are of considerable interest as they
meet certain fundamental requirements for a photosensitizer.
Brominated hypericins have displayed potential phototoxic
activity, e.g., against the herpes simplex virus and the
influenza virus.22 It was also shown that some of these
enhance the quantum yield of singlet oxygen and increase
the quantum efficiency of superoxide formation compared
with that of unsubstituted hypericin, as a result of enhanced
intersystem crossing between the first excited singlet and
triplet states.23,24 A recent study from our group shows that
one possible reaction of brominated hypericin after excitation
is reduction followed by dissociation, generating a negatively
charged bromine as a leaving group and a hypericin radical
capable of binding to biological molecules.25

1.2. Transportation and Carriers of Hypericin. For
drug molecules to reach possible cellular targets, they must
transfer across the plasma membrane of the cell. The
intracellular location and the way there, often mediated by
the assistance of a carrier, depends on the properties of the
molecules. This is an important field of study since the ROS
generated from the photoreactions have short lifetimes and
can only cause oxidative damage in the nearest surroundings.
Several experimental studies suggest possible intracellular
targets for photosentizisers, but for hypericin, the exact target
and the transportation thereto are still not fully understood.
One possible way for the molecule to enter the cell is through
diffusion.8 Another possible pathway to cellular transport is
by accumulation in low-density lipoproteins (LDL)15,26,27 and
to a lower extent in high-density lipoproteins and human
serum albumin15,28-32 in human plasma when administrated
into the bloodstream. Interaction with these biological
molecules also helps to solubilize the highly hydrophobic
hypericin molecule and to prevent aggregation, which
otherwise would suppress virucidal activity and inhibit

photodynamic properties. Another way to avoid aggregation
and to solubilize the hypericin molecules is to encapsulate
them into other appropriate drug-carriers, such as lipo-
somes.33 Tetra-brominated hypericin has been shown to
exhibit higher binding constants to liposomes than hypericin
as well as a higher singlet oxygen quantum yield compared
to hypericin when bound to liposomes.34

1.3. Intracellular Location of Hypericin. The penetration
of photosensitizers into various cell compartments, especially
the nucleus, and their intracellular concentrations are im-
portant properties when considering cytotoxic activity.
Although the exact intracellular location of hypericin is still
unclear, the hydrophobic character of the molecule indicates
accumulation in cytoplasmatic membranes, such as the
endoplasmic reticulum and the Golgi apparatus, in which
the molecule has also been found.35-37

Cholesterol carried by LDL is, upon entering the cell,
directed to the lysosomes in which it is hydrolyzed. Hypericin
encapsulated in LDL has been confirmed by several studies
to end up located in the lysosomes.38,39 Several model
systems imply initial lysosomal damage caused by hypericin
which triggers the mitochondrial apoptosis pathway.40 Hy-
pericin has been reported to accumulate in mitochondria,38,41

and some pathways involve breakdown of the mitochondrial
membrane.42-44

Studies also show an accumulation in the cell mem-
brane.8,45-47 One of these studies shows that only after long-
term incubation, the molecules can penetrate the membrane
and eventually reach the nucleus,45 which has been pointed
out as another possible target for hypericin.45-47 Hypericin
has been shown to interact with DNA, preferably with
guanine and adenine nucleotide bases through formation of
hydrogen bonds between position N7 of the purines and the
hydroxyl groups of hypericin.48-50

Membrane lipid peroxidation can be another powerful
consequence of photoinduced intracellular damage caused
by hypericin.51-53 Photosensitized hypericin has the ability
to decrease the plasma membrane potential (depolarization)
as well as the activity of Na+, K+-ATPase in liposome
models;53 which might have serious effects on the condition
of a cell. Also in the treatment of various virus infections,
membranes seem to be a potential target for hypericin, since
only lipid-coated viruses are inactivated by the treatment.54,55

The widespread in findings of specific sites of intracellular
localization of hypericin is probably due to the usage of
different model systems, incubation time, and constitution
of the incubation medium.

In order to obtain more insight on the action of hypericin
in a biological environment, we here report the behavior of
hypericin (Hy) with no, one (Hy-Br; position I, Figure 1)
or four bromines (Hy-4Br; positions I-IV, Figure 1) inside
a lipid dipalmitoylphosphatidylcholine (DPPC) bilayer, ap-
plying molecular dynamics simulations.

2. Theoretical Methodology

The molecular dynamics program GROMACS (version
3.3)56,57 was used throughout the study. The membrane
model used was an already equilibrated DPPC bilayer

Figure 1. The hypericin molecule (Hy). The molecular axis
is defined by the vector uniting carbon atoms 10a to 3b, and
the molecular plane is defined by carbon atoms 10a, 3b, and
14b.16 Bromine substitution was modeled at position I (Hy-Br)
and positions I-IV (Hy-4Br).
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consisting of 64 lipids and 3 846 water molecules.58,59 Three
independent simulations were performed, one for each neutral
hypericin derivative (Hy, Hy-Br, and Hy-4Br). The
geometries of the hypericin molecules were generated from
geometry optimizations of neutral hypericin derivatives in
the quantum chemistry program Gaussian0360 at the B3LYP/
6-31G(d,p) level of theory. Mulliken atomic charges obtained
from the geometry optimizations were assigned to the
molecules. The GROMACS force field was used throughout.
The topology of hypericin was obtained using the PRODRG
software61 through its web server (http://davapc1.bioch.dundee.
ac.uk/prodrg/), using the PDB coordinates obtained in the
quantum optimizations. As bromine is not parametrized in
the force field, Lennard-Jones and ligand parameters for
chlorine were used instead. For the DPPC phospholipids, a
standard united-atom force field was applied,62 and for water,
we used the SPC model.63 The starting point for each
simulation was the resulting coordinates from previous 20
ns simulations using different conditions in which two
hypericin molecules of each derivative were inserted into
the membrane model, one in the outer region of the water
phase and one in the middle of the lipid phase of the bilayer
(this was part of an initial set of exploratory simulations to
look for the general partition behavior of the molecules, and
all the unconstrained equilibrium calculations were done
using systems that contained the molecules already inside
the lipid bilayer). These simulations resulted in both mol-
ecules locating in the lipid bilayer part of the system after a
short equilibration, due to the hydrophobic character of the
molecules. The systems were first equilibrated for 10 ns to
uncorrelate those from the previous simulations, and followed
by 50 ns productions in which the system trajectories were
collected every 0.8 ps. During the simulations, none of the
hypericin molecules moved out into the water phase or across
the bilayer middle. The two molecules were located during
the entire simulations in the lipid bilayer region, on opposite
water/lipid interface sides, and were never close enough to
interact strongly with each other (see Figure 2).

All simulations were performed using a time step of 2 fs
and using the isothermal-isobaric ensemble at T ) 323 K
and p ) 1 bar. The temperature and the pressure were held
constant using a Nosé-Hoover thermostat64,65 with a

coupling constant of 0.1 ps and a semi-isotropic Parrinello-
Rahman barostat66,67 with a coupling constant of 1 ps. A
particle mesh Ewald scheme68,69 was used to calculate the
electrostatic interactions with a 10 Å cutoff for the real space.
The same cutoff was used for the short-range van der Waals
interactions (Lennard-Jones terms). Bond lengths were
constrained using the LINCS algorithm.70

Analysis was performed on the equilibration runs to check
for equilibration convergence and on production runs from
which all reported data was obtained. Data analysis programs
written in C++ were used when no other program was
available in the GROMACS package to calculate various
properties reported herein.

A potential of mean force formalism was used to calculate
free energy profiles for hypericin molecules across the lipid
bilayer (the direction of the z-axis). The z-component of the
force, Fz, acting on the molecule at certain constrained distances
between the molecule and the bilayer center-of-mass was
collected at different positions along the z-axis. The free energy
for the transfer process between zi and zf is written as

where the bracket means an average over the forces collected
at each constrained distance. To calculate the free energy profile
for the translocation of each molecule, 41 constrained simula-
tions were performed in which the hypericin molecule was
located at different positions that differ by 0.1 Å along the z-axis
direction. The starting points for the simulations were sampled
from the previous unconstrained simulations. To sample the
points in the middle of the bilayer, where the molecule was
never located during the unconstrained simulations, a weak force
was used to push the molecule toward the lipid bilayer, choosing
the value of the force to make the least perturbation possible
on the bilayer system. Each point in water was equilibrated for
1 ns, and a production run of 4 ns was used. Inside the lipid
bilayer, an increase in the sampling was needed due to the
slower motion of the molecules and, therefore, each point was
equilibrated for at least 4.6 ns, and a production run of 10 ns
followed. The force acting on the hypericin center-of-mass was

Figure 2. Snapshot from a simulation showing two hypericin molecules in a DPPC bilayer.

∆G ) Gzf
- Gzi

) -∫
zi

zf

〈Fz〉zdz (1)
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collected at every time step during the production run. A
SHAKE algorithm71 was used to constrain the distance between
the center-of-mass of the bilayer and the hypericin molecules
(the molecules were constrained in the z-direction but allowed
to rotate).

The permeability is defined as the current density divided
by the concentration gradient across the membrane. The
procedure developed by Marrink and Berendsen72 was
adopted to calculate the permeability coefficients, based on
the fluctuation dissipation theorem and on using the deviation
of the instantaneous force, F(z,t), from the average force
acting on the molecule obtained during the constrained
dynamics:

The local time-dependent friction coefficient, �, can be
calculated from the following autocorrelation function:

where T is the absolute temperature and R is the gas constant.
By integrating the friction coefficient, one can obtain the
diffusion coefficient, D:

This function was fitted to a double exponential using a
nonlinear fitting procedure72 in order to integrate the auto-
correlation of the force fluctuations:

This illustrates that the molecules move inside the lipid
bilayer in two distinct time scales, corresponding to the two
decay times, τ0 and τ1, one fast and one slow.

The permeability coefficient, P, can be calculated by
integrating over the local resistances across the membrane,
R(z). R(z) is obtained by dividing the exponential of the
previously calculated free energies, ∆G(z), by the diffusion
coefficients, D(z):

3. Results and Discussion

Already during initial equilibration (unpublished data), the
hypericin molecules moved into the lipids and remained there
for the rest of the simulation. In Figure 2, we display a
snapshot from the simulation. The probability of finding the
molecules in the interface between the lipids and the water
phase is high, as illustrated in Figure 3A for Hy-Br. In
Figure 3B, the equilibrium distributions of all three hypericin
derivatives are displayed. The figures show clearly that the
probability to find the hypericin molecules is high close to
the densest region of the membrane, i.e., close to the polar
lipid head groups. The molecules are highly hydrophobic
but also have some amphiphilic character due to the many
hydroxyl groups. These groups have the ability to interact
with water, which explains why such large and inflexible

molecules accumulate in the most dense region of the
membrane, where they are within the lipid phase yet in
contact with waters that penetrate into the bilayer. The final
density profile of Hy-4Br is wider compared to Hy and
Hy-Br, suggesting that this molecule is moving closer to
the bilayer middle (the same applies to Hy-Br when
compared to Hy). This affects the possibility to interact with
surrounding water, as is discussed below in connection with
radial distribution functions. Hypericin displays the most
narrow density profile. None of the three molecules moves
further out than 2.5 nm from the bilayer center. The density
maximum is located closer to the bilayer center with an
increasing level of bromination. A related study performed
on the action of psoralen derivatives in lipid membranes
showed similar accumulation in the lipid region, although
slightly closer to the bilayer center (away from the densest
region of the membrane), despite the smaller sizes of those
compounds.73 Generally similar partition profiles were also
obtained for noncharged, hexyl ester and ethyl ester 5-ami-
nolevulinic acids.74

A molecular axis tilt angle was defined as the vector
uniting carbon 10a to carbon 3b (Figure 1), since those atoms
belong to the inner and rigid part of the hypericin molecule
and can give a clear idea about the orientation of the bay
area of the molecule. An important aspect to account for is

∆F(z, t) ) F(z, t) - 〈F(z, t)〉 (2)

�(z, t) ) 〈∆F(z, t)∆F(z, 0)〉/RT (3)

D(z) ) RT/�(z) ) (RT)2/ ∫
0

∞

〈∆F(z, t)∆F(z, 0)〉dt (4)

C(t) ) A0 exp(-t/τ0) + A1 exp(-t/τ1) (5)

1/P ) ∫R(z)dz ) ∫
zi

zf
exp(∆G(z)/kT)

D(z)
dz (6)

Figure 3. (A) Density profile for Hy-Br in the DPPC bilayer.
(B) Resulting distribution for the three different hypericin
derivatives as function of distance to the bilayer middle and
compared with the DPPC density profile. The latter were
obtained using the bilayer center-of-mass as the folding point.
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the fact that the bilayer is symmetric, with two interfaces
between lipids and water, generating two normal vectors
pointing in opposite directions. This was considered by
subtracting normal vectors pointing toward negative values
by 180°. The molecular axis tilt angle distributions for the
hypericin derivatives are plotted in Figure 4A. The results
are interpreted such that if the angle is 0° or 180°, then the
molecular axis is parallel to the bilayer normal (the z-
direction), and if the angle is 90°, then the molecular axis is
perpendicular to the bilayer normal.

For hypericin, the distribution is much sharper than for
the other two molecules and has a clear maximum located
around 18°. For Hy-Br and Hy-4Br, the distributions are
wider and bimodal, presenting two maxima, one located close

to 16° (16-40° for Hy-Br) and another close to 58°. The
major difference between the molecules is that an increased
bromine content results in larger angle values, which are
more probable. The first thing to note from these values is
that the bay area of the molecule containing alcohol groups
is oriented toward the water interface and the opposite part
of the molecule containing the two methyl groups is located
toward the inner and apolar part of the bilayer, in accordance
with the hydrophobic nature of these.

A simple angle calculation shows that the molecules tend
to maximize the interaction of the OH groups with the water
interface. If the molecular axis tilt angle was 0°, then only
two groups would be close to water, but by rotating ∼20°,
the other two OH groups also surrounding the carbonyl
oxygen are oriented closer to water. An angle of about 50°
indicates that the bromine atoms become closer to water,
and thus, in the molecules containing bromine atoms, there
is a competitive balance between orienting both the OH and
Br groups toward water. It is important to note that the
probability to find an angle larger than or equal to 90° is
essentially zero for all three molecules. This means that the
methyl groups are never closer to the water interface than
the OH groups.

The molecular plane was defined by carbons 10a, 3b, and
14b, and the plane tilt angle φ was defined by the angle
formed by the bilayer normal and the vector normal to the
molecular plane. The molecular plane tilt angle distributions
for the hypericin derivatives are plotted in Figure 4B. The
results are interpreted as follows: if the angle is 0° or 180°,
then the molecular plane is aligned with the bilayer plane,
and if the angle is 90°, then the molecular plane is
perpendicular to the bilayer plane. Since hypericin and its
derivatives have a disk-like shape, one would expect the
molecule plane to be perpendicular to the bilayer plane, since
this way less interfacial area is needed to fit each molecule
inside the bilayer. This implies that plane tilt angles close
to 0° or 180° would be difficult or impossible to find, but
instead the plane tilt angle should be close to and somewhere
around 90°. This is clearly seen in Figure 4B, where the tilt
angle for all three molecules can vary between 40° to 150°
with maxima close to 90°, especially for Hy and Hy-4Br.

The plane tilt angle maximum for Hy-Br is around 70°,
that is, 20° off the molecule plane being perpendicular with
the bilayer plane. For Hy we have a maximum around 95°,
5° away from an alignment with the perpendicular to the
bilayer plane. For Hy-4Br we have a bimodal distribution,
which means that the angles sampled preferentially around
two maxima: one around ∼85° and another around ∼110°.
Both maxima are centered around distributions of the same
amplitude. One should take in consideration that, due to
symmetry reasons, the relative position of the molecule is
the same, if the plane tilt angle has the same divergence from
90°. This means that the first maximum of Hy-4Br (φ )
85°) has the same relative position in relation to the interface
as Hy (φ ) 95°). The other maximum of Hy-4Br, located
close to 110°, has a deviation of 20° from being perpen-
dicular to the bilayer plane, the same amount as for Hy-Br
(φ ) 70°). From these data, one can conclude that hypericin
preferentially orients itself such that the molecular plane is

Figure 4. (A) The angle between the vector normal to the
bilayer and the molecular axis vector pointing from atom C10a

to atom C3b. (B) Molecular plane tilt angle, defined by the angle
formed by the bilayer normal and the vector normal to the
molecular plane. (C) Same plots as A and B for the molecular
axis tilt (upper graphs) and molecular plane tilt (lower graphs)
with the error bars this time displayed separately for clarity.
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aligned along the z-axis of the bilayer. The addition of one
bromine favors the molecular plane tilting, and with the
addition of four bromine, the molecular symmetry is regained
and the molecule orients in either position.

The error bars, considered as the standard deviation of
the mean value:75

were calculated and are displayed in Figure 4C. Each error
bar in the tilt distributions was calculated by dividing the
production run in blocks of 1 ns (N ) 50) and by calculating
the standard deviation of the mean value of the blocks (σ).
Autocorrelation functions (Cn) using these 50 values were
used to calculate the decorrelation time D (time correspond-
ing to Cn being equal to zero). With all this data, the error
bars can be calculated according to the previous equation.

A simple test to see if the tilt axes distributions sample
(or not) bimodal distributions is to split the 50 ns production
runs in blocks and to analyze each block separately. If the
tilt axis has a bimodal distribution, one can see in each block
a clear preference in each molecule for one or the other
bimodal zones and in between blocks the changing of
probabilities of each bimodal zone because some molecule
(or molecules) change the tilt and start to sample the other
zone. The error bars also give an indication of this fact. For
instance, the tilt molecular axis of the Hy-4Br molecule
(Figure 4C, top right) can be found to preferentially sample
values around 16° or 58°, and the error near 30° is lower
because the two distributions have similar probabilities in
that area. Moreover, the larger error bar for brominated
hypericin is due to the fact that these molecules have the
tendency to sample two different regions of the angle space,
in opposition to hypericin that has only a single and sharp
distribution.

Summarizing the molecular axis and molecular plane tilt
angle distributions, we can conclude that hypericin and its
derivatives are oriented in such a way to have the hydroxyl
groups close to the water interface, with possible rotation to
allow the bromine atoms to also become oriented toward
this interface, and that the molecular plane is essentially
perpendicular to the bilayer plane.

Radial distribution functions between oxygen atoms on
the hypericin derivatives and hydrogen atoms in the sur-
rounding water (Figure 5A) and between polar hydrogen
atoms on the hypericin derivatives and oxygen atoms in the
surrounding water (Figure 5B) were calculated. The first peak
in both figures (at ∼0.18 nm) corresponds to a hydrogen
bond. The following peak in Figure 5A corresponds to the
second hydrogen in the same water molecule or a second
solvation shell, whereas the second peak in Figure 5B
corresponds to a second solvation shell of water. After this,
there is an increase in amplitude of the radial distribution
functions as more and more water molecules are included
in the shells of higher order. The fact that hydrogen bonds
are found implies that the molecules do interact with water.
As the bay hydroxyl groups are located very close to the
interface between the lipids and the water, these are the likely
atoms/groups involved in hydrogen-bond formation. The

radial distribution functions decrease in the order Hy >
Hy-Br > Hy-4Br, both in the case of hydrogen and oxygen
interactions. The probability to find hydrogen bonds between
oxygen on the hypericin molecules and hydrogen atoms in
water is higher than between hypericin hydrogens and
surrounding oxygen. This is due to the two lone pairs on
oxygen that, hence, enables formation of two hydrogen
bonds. Hydrogens bonds are detected for all molecules,
involving hydrogen as well as oxygen on the hypericin
molecules, except in the case involving hydrogen on Hy-4Br
for which a peak is hardly visible. As discussed in connection
with the density profiles above, Hy-4Br moves closer to
the bilayer center compared to Hy and Hy-Br, which
reduces the interaction with water and, thereby, results in
lower radial distribution functions. Hypericin displays a more
narrow density profile, positioned in the region closest to
the interface between the lipids and water, and thus, the radial
distribution functions are the highest for hypericin.

The mean-square displacement (MSD)76 reveals details
about the movements of the molecules inside the bilayer.
The MSD is defined by

where rb(0) and rb(t) are the positions of a particle at time t )
0 and at a certain time t. The brackets indicate a time average

σav ) σ
√(N/D - 1)

(7)

Figure 5. Radial distribution functions between (A) oxygen
atoms on the hypericin derivatives and hydrogen atoms in the
surrounding water; and (B) between polar hydrogen atoms
on the hypericin derivatives and oxygen atoms in the sur-
rounding water.

MSD(t) ) 〈| rb(t) - rb(0)|2〉 (8)
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over all similar particles and over different time origins along
the simulation. The Einstein relation allows for the calcula-
tion of the diffusion coefficient, D, at sufficiently long
simulation times:76

where d is the dimensionality of the space. This way, one
can obtain the MSD for the molecules moving in the bilayer
plane (d ) 2) and moving along the bilayer normal (d ) 1),
respectively. The MSD provides a measure of the average
distance a molecule travels in the system, and the growth
rate of the MSD depends on how often the molecule collides,
i.e., a measure of the ease of diffusion of the molecule.

Like other molecules diffusing in confined media, the
hypericin molecules never reach the Einsteinian limit of
proper diffusion within the limited time of the simulation,
and anomalous diffusion occurs where MSD is proportional
to tn, with 0 < n < 1.77 The implication is that a direct
comparison with experimental diffusion coefficients cannot
be made. However, based on the MSD, one can state which
molecules have a higher or a lower diffusive regime. The
MSD in the bilayer plane and along the normal of the bilayer
(z-direction) are displayed in Figure 6A and B, respectively.
From Figure 6A, it is clear that the movement in the bilayer
plane is not significantly changed by adding a bromine atom
to hypericin, whereas the addition of four bromine atoms
allows the molecule to move more easily. Although Hy-4Br
is heavier, the MSD primarily reflects the hydrogen-bond

capability, in accordance with the findings for the radial
distribution functions that showed a clear decrease in
hydrogen-bonding interaction between Hy-4Br and water.

One should be cautious in interpreting the MSD along the
bilayer normal since this movement, as opposed to the
movement in the bilayer plane, is finite, and hence, the MSD
should level off independently of any characteristic of the
molecule under consideration. Anyway this property is
displayed in Figure 6B and shows that the addition of at
least one bromine atom increases the diffusion of the
molecules. This again shows that the higher ability of
hypericin to form hydrogen bonds with water makes its
average position closer to the lipid-water interface (i.e., the
time spent at the interface is larger) and hinders both
the movement of the molecule in the direction normal to
the bilayer and in the bilayer plane. Comparing both
movements in the bilayer, it is also clear that the diffusion
in the bilayer plane is much higher than that in the z-direction,
for all molecules.

The local diffusion coefficients across the bilayer were
calculated by integrating the fitted autocorrelation functions
(eq 4), and the dependence on the distance to the bilayer
center is displayed in Figure 7A and B (the latter showing
only the region within 2 nm from the bilayer center). Figure
7A shows a significant difference between the diffusion
coefficients in the lipid region of the bilayer and in the water
phase. The diffusion of the molecules in water is faster than

Figure 6. MSD in the (A) xy-plane and in the (B) direction
normal to the bilayer.

D ) lim
tf∞

1
2dt

〈|ri(t) - ri(0)|2〉 (9)

Figure 7. (A). Local diffusion coefficients of the hypericin
derivatives in the DPPC bilayer, as functions of the distance
to the bilayer middle. (B) Magnification of the region within 2
nm from the bilayer center.
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inside the lipids, since the water molecules can rearrange
faster around the hypericin molecules as they move around.
When hypericin is inside the bilayer, space must be created
by the much slower moving lipid molecules before it can
move to another position. Inside water, the diffusion coef-
ficients of the molecules decrease with increased bromine
content. This seems to be caused by the different molecular
size and especially by the different molecular weights of the
molecules, where the heavier and the larger molecule moves
more slowly.

Looking closer at the diffusion coefficients within the lipid
region of the bilayer (Figure 7B), it can be seen that Hy-4Br
moves slower than the other two molecules, also in the very
middle of the bilayer where the density is at its lowest. The
other two molecules show a minor increase in diffusion very
close to the bilayer center, with very similar profiles.

Free energy profiles for the transport process from water
and into the lipids, as functions of the distance to the bilayer
center, were calculated using the potential of mean force
formalism outlined above (Figure 8).78 In similar calcula-
tions, using the same technique but only 2 ns in the
production runs (we used 4 ns in water and 10 ns in the
lipid bilayer),79 they obtained errors in the free energy that
ranged from about 0.7 to 4 kJ/mol in the bilayer middle,
where the errors were found to be larger and, in a way, that
was not clearly dependent on the size of the molecules
studied. The profiles show a local minimum in the region
1-2 nm from the bilayer center, near the polar headgroup
region, when moving from the water phase into the lipids.
Having passed this minimum, the free energy increases when
the molecules move toward the bilayer middle. Hy is the
only one of the three molecules which shows a positive
change in free energy at the very middle of the bilayer, with
an increase of ∼3.5 kJ/mol compared to furthest out in the
water phase. Hy-4Br shows a decrease of ∼1.2 kJ/mol, and
Hy-Br shows a decrease of ∼12.3 kJ/mol in the bilayer
middle. Hy-Br also displays a deeper free energy minimum,
∼18 kJ/mol lower than for Hy and Hy-4Br, in the region
close to the polar headgroups. This indicates that Hy-Br is
the most likely to accumulate inside the lipids, and, since
the diffusion in the lipid region is low, the molecules are
more likely to reside in the polar headgroup region of the
bilayer.

From the calculated free energy profiles and the local
diffusion coefficients across the lipid bilayer, the local
resistance was calculated using eq 6, and the resulting profiles
for the three molecules are displayed in Figure 9. To display
all three molecules more clearly, the Hy resistance profile
was scaled down by a factor 7. For all three molecules, an
increase in resistance was found in the bilayer middle,
although for Hy-Br this is much less than for Hy and
Hy-4Br. For Hy and Hy-4Br, the peaks in the center are
considerably higher than the increased resistance seen in the
water phase, whereas for Hy-Br the opposite is noted. The
free energy plays a dominant role in the appearance of
the resistance profiles, and the increase in free energy in the
middle of the bilayer is in accordance with the increased
resistance in this region.

Permeability coefficients were calculated by integrating
the resistance profiles across the bilayer, and from those, it
can be concluded that the permeation decreases in the order
Hy-Br > Hy-4Br > Hy (Table 1). As mentioned before,
the permeability strongly depends on the free energy, and
the decrease in permeation follows the increase in energy.
Hy-Br displays a significantly lower free energy, both close
to the polar headgroups of the lipids and in the center of the
lipids, than the other two which contributes to an easier and,
therefore, faster permeation. An experimental study has
shown that halogenation of drug molecules enhances per-
meation by increasing the permeability coefficients and
enhances the free energy of transfer into the lipid membrane,
as compared to the nonsubstituted molecules.80 Those results
are in agreement with our findings that the brominated
hypericins display higher permeability coefficients than that
of the nonsubstituted hypericin.

Estimated permeability coefficients from experiments of
hypericin across monolayers of Caco-2 cells are in the order

Figure 8. Free energy profiles for the hypericin derivatives
inside the DPPC bilayer.

Figure 9. Local resistance profiles of the different hypericin
derivatives in the DPPC bilayer, as functions of the distance
to the bilayer middle. The hypericin profile was scaled down
by a factor 7.

Table 1. Permeability Coefficients Inside the DPPC Bilayer
(cm s-1)

molecule permeability coefficients

Hy 4.21 × 10-4

Hy-Br 4.94 × 10-3

Hy-4Br 1.51 × 10-3
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of 102-103 less than those calculated herein.46 The difference
when comparing experimental and calculated permeability
coefficients is probably due to that natural membranes
contain many more components, such as proteins and
cholesterol, which can either enhance or suppress the
permeability through the membrane. The present computa-
tional study was performed with a simplified membrane
model and with the aim to study passive permeation only,
and how the permeability is affected by different levels of
bromination.

Conclusions

Three hypericin derivatives were studied in order to reveal
their distribution and specific properties in a DPPC lipid
membrane, using classical molecular dynamics simulations.
All three molecules showed a strong preference to ac-
cumulate in the densest region of the membrane, close to
the polar headgroups. Hypericin accumulates closest to the
interface between the lipids and water. This is also manifested
by radial distribution functions which show the highest
number of hydrogen bonds between hypericin and water.
Local diffusion coefficients show, as expected, high-diffusion
rates in the water phase compared to that of the lipids, due
to the large size and hydrophobic character of the molecules.
Calculated permeability coefficients suggest a faster overall
diffusion for Hy-Br. This finding is also supported by the
free energy profiles which displays a more negative change
in free energy for the transport process of Hy-Br moving
from water into the lipids. For all three hypericin derivatives,
the free energy profiles display minima within 1-2 nm from
the bilayer center, in the same region as where the molecules
were found to accumulate according to the density profiles.
According to the present results, we can expect more of Hy
and Hy-4Br to accumulate within the membrane, suggesting
a larger possibility of direct photodamage caused by those.
Hy-Br has a higher capability to translocate across the
membrane and would potentially have a larger probability
to penetrate the membrane and, thus, reach other targets in
the interior of a cell.
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Abstract: The convergence properties of the absolute single-molecule configurational entropy
and the correction terms used to estimate it are investigated using microsecond molecular
dynamics simulation of a peptide test system and an improved methodology. The results are
compared with previous applications for systems of diverse chemical nature. It is shown that (i)
the effect of anharmonicity is small, (ii) the effect of pairwise correlation is typically large, and
(iii) the latter affects to a larger extent the entropy estimate of thermodynamic states characterized
by a higher motional correlation. The causes of such deviations from a quasi-harmonic behavior
are explained. This improved approach provides entropies also for molecular systems undergoing
conformational transitions and characterized by highly frustrated energy surfaces, thus not limited
to systems sampling a single quasi-harmonic basin. Overall, this study emphasizes the need
for extensive phase-space sampling in order to obtain a reliable estimation of entropic
contributions.

1. Introduction
Entropy is a key property to understand a wide variety of
physical, chemical, and biochemical phenomena. However,
the estimation of absolute entropies and entropy differences
from computer simulations is a long-standing problem1-9 and
one of the current challenges in computational chemistry.10-15

The calculation of reliable absolute entropies from mo-
lecular dynamics (MD) simulations is intrinsically difficult

because the absolute entropy is a measure of the overall
extent of phase space (PS) accessible to a molecular system.
However, absolute single-molecule entropies can be esti-
mated based on an analytical approximation to the configu-
rational probability distribution corresponding to the PS
accessed by a simulated system.2 The underlying theory,
assumptions, approximations, and alternative practical imple-
mentations have been recently reviewed.10,11 The relationship
among quasi-harmonic (QH), essential-mode, and normal-
mode analyses has also been investigated.11 For an extensive
review of the subject, not limited to the QH approach, see
also refs 11 and 16-19 and references therein.

The difference between the true entropy of a simulated
system and its QH estimate arises from (i) anharmonicities
(i.e., non-Gaussian behavior) in the probability distributions
along individual QH modes and (ii) correlations among the
probability distributions associated with different QH modes
(beyond the pairwise linear correlations accounted for). These
effects are neglected in standard QH analysis10,11 and (nearly)
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always lead to a negative entropy contribution.11 A method
to correct for both artifacts was recently described.11 Point
ii is of particular relevance when trying to estimate entropy
differences between two conformational states of a molecular
system because error cancellation cannot be guaranteed a
priori.11,20 By taking into account correlation effects of
increasing order, entropy estimates based on corrected QH
analysis aim at capturing the entropy corresponding to the
entire PS sampled (see Figure 1 in ref 11). Thus, this
approach is not limited to systems sampling single QH basins
and allows capturing conformational transitions.

In the present article, we expand the previous study in ref
11. A general formulation is proposed to account for
correction terms of increasing order, and its practical
implementation and limitations are discussed. We review
previous studies employing this novel approach on an array
of (bio)molecular systems providing a solid basis for its
application and demonstrating the importance of these
correction terms in the evaluation of absolute entropy and
entropy differences. Using microsecond MD simulation of
a test system, we analyze the convergence properties of the
absolute single-molecule entropy and of the correction terms
used to estimate it. The results emphasize that sufficient PS
sampling is required for a reliable estimation of entropic
contributions because convergence of both the QH upper
bound and the required correction terms should be achieved.

2. Methods

2.1. QH Analysis. QH analysis aims to account for
motions in the overall extent of PS accessible to a molecular
system at thermodynamic equilibrium. It relies on ap-
proximating the configurational probability distribution as a
multivariate Gaussian, the momenta of which can be
estimated, e.g., from molecular dynamics (MD) or Monte
Carlo simulations.

More precisely, for a given choice of generalized coor-
dinate system q (of dimension M′ ) 3N, N being the number
of atoms), its input quantity is the covariance matrix C_ q

characterizing the atom-positional fluctuations (and their
correlations) around an average configuration qj. Assuming
a canonical ensemble and fluctuations resulting from an
underlying harmonic potential of the form

where H_̃ q is an effective Hessian matrix and q̃o an effective
equilibrium configuration, it follows that11

Note that the corresponding harmonic model only strictly
produces the correct average configuration qj and covariance
matrix C_q for generalized coordinate systems where the mass-
metric tensor A_ q is configuration independent.11

In this study, we only consider the specific case of single-
molecule entropy (i.e., the entropy of individual distinguish-
able atoms in a covalently bound molecule) based on MD
simulation trajectories. As detailed elsewhere,21 single-
molecule entropy differs from molecular entropy in that the

former estimate only accounts for intermolecular correlation
in terms of the effect of the solvent on the single-molecule
dynamics.

In practice, the QH analysis of an MD trajectory involves
the following steps.11

First, the average configuration qj and the covariance matrix
C_ q in the chosen coordinate system are evaluated as

The equilibrium configuration q̃o and Hessian matrix H_̃ q of
the effective underlying harmonic model are then defined
according to eq 2.

Second, the (symmetric) metric-tensor-weighted covari-
ance matrix is diagonalized

where V_ q is a M × M-dimensional (orthogonal) matrix the
columns of which represent the M′ components of the
eigenvectors {νq,m| m ) 1, ..., M′} (called QH modes) of the
metric-tensor-weighted covariance matrix and F_q is a diago-
nal matrix containing the corresponding eigenvalues. These
eigenvalues are related to the associated angular frequencies
of the underlying effective harmonic model as (see eqs 2
and 4)

The sum of the eigenvalues in F_q is equal to the total mean-
square metric-tensor-weighted fluctuation of the system, i.e.

so that the eigenvalues can be interpreted as contributions
of individual QH modes to this quantity (a larger value
indicating a larger contribution to the total fluctuation of the
molecule).

Third, the simulated trajectory is projected onto the QH
modes, i.e., one considers the transformed coordinates bq

defined as

These so-called QH coordinates satisfy the properties11

Because F_q is diagonal, eq 8 enforces that the individual
components {bq,m| m ) 1, ..., M′} of the QH coordinates bq

are pairwise linearly uncorrelated, which, however, does not
imply the absence of higher order (i.e., pairwise supralinear
and higher order) correlations.

We previously motivated the choice of a Cartesian vs
internal coordinate system.11 If a Cartesian coordinate system
r is employed6,8 (after removal of the overall translational
and rotational motion from the sampled trajectory22), the
mass-metric tensor A_ r is identical to the mass matrix M_ (thus
configuration independent, so that eq 2 is exactly satisfied).

Vh
˜ (q) ) 1

2
(q - q̃o)

T H_̃ q(q - q̃o) (1)

q̃o ) q̄ and H_̃ q ) �-1C_ q
-1 (2)

q̄ ) 〈q〉 and C_ q ) 〈(q - q̄) X (q - q̄)〉 (3)

V_ q
TA_ q

1/2C_ qA_ q
1/2V_ q ) F_q (4)

ωm ) (�Fq,m)-
1/2, m ) 1, 2, ..., M (5)

Tr[F_q] ) Tr[A_ q
1/2C_ qA_ q

1/2]

) 〈[A_ q
1/2(q - q̄)] · [A_ q

1/2(q - q̄)]〉 (6)

bq ) V_ q
TA_ q

1/2(q - q̄) (7)

〈bq〉 ) 0 and 〈bq X bq〉 ) V_ q
TA_ q

1/2C_ qA_ q
1/2V_ q ) F_q (8)
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In this case, the QH analysis relies on the diagonalization
of the mass-weighted Cartesian covariance matrix, i.e.

in place of A_ q
1/2 C_ q A_ q

1/2 in eq 4.
In the absence of geometric constraints, the corresponding

eigenvalue matrix F_r contains 3N - 6 nonzero and 6
vanishing elements. If Nc geometrical constraints are present
in the system (e.g., bond-length constraints), these will map
to an identical number of zero eigenvalues (see Appendix
A in ref 23 for a derivation in the mathematically similar
context of essential-mode analysis). Thus, the number of QH
modes with nonzero eigenvalues is M ) 3N - Nc - 6, where
M′ ) 3N. When using a generalized coordinate system
excluding overall translation and rotation variables, one has
M′ ) M ) 3N - Nc - 6. Note that the QH coordinates
have units of mass1/2 × length.11

2.2. Entropies and Correction Terms. Single-molecule
entropies can be obtained as follows.11 In terms of QH
coordinates, the configurational probability distribution as-
sociated with the effective harmonic model of eq 2 corre-
sponds to that of M independent harmonic oscillators. Thus,
the associated entropy So can be calculated analytically.
Assuming a canonical ensemble and a configuration-
independent mass-weighted metric tensor, this leads to11

where s(ω) is the canonical entropy of a one-dimensional
harmonic oscillator with angular frequency ω. The classical
expression scl,o(ω) and the quantum-mechanical expression
sqm,o(ω) for this quantity are

and

where p ) h(2π)-1 is the reduced Planck’s constant, leading
to eq 10 to corresponding total estimates Scl,o and Sqm,o,
respectively.

In practice, even if the underlying trajectory was generated
at the classical level, the QH entropy must be evaluated using
the quantum-mechanical oscillator formula because in the
high-frequency limit the classical entropy of a one-
dimensional harmonic oscillator diverges to the unphysical
limit of -∞ rather than to the physical limit of zero.8,11

However, the QH entropy estimate Sqm,o is not the absolute
configurational entropy of a single molecule but an upper
bound for this quantity due to the presence of QH mode
anharmonicities and correlations not accounted for in the
effective harmonic model of eq 2. Corresponding correction
terms can be formulated exactly at the classical level using
an approach previously described11 and briefly summarized
below.

In the canonical ensemble, assuming a configuration-
independent mass-metric tensor, the exact classical single-
molecule entropy reads11

where p(bq) is the probability distribution in the M-dimen-
sional space of the QH coordinates bq (eq 7). This expression
can be compared with the approximate (classical) QH
estimate Scl,o based on eqs 10 and 11, i.e.

A series of increasingly accurate estimates {Scl,K| K ) 0, 1,
..., M} may now be formulated as

where c denotes a combination of K QH modes, C(K,M) )
[(M - K)!K!]M! for K > 0 along with C(0,M) ) 0 represents
the total number of possible combinations c of K modes
among the M QH modes and p(c)(bq

(c)) is the K-dimensional
probability distribution in the subspace of the QH coordinates
bq

(c) within bq that are involved in a combination c. The
derivation of this equation is given in the Appendix in the
Supporting Information.

It is easily verified that Scl,K)0 ) Scl,o (eq 14, i.e., the
uncorrected classical QH entropy) and Scl,K)M ) Scl (eq 13,
i.e., the exact classical entropy). Substituting the classical
estimate Scl,o by the corresponding quantum-mechanical
estimate Sqm,o (eqs 10 with 12) into eq 15 and introducing
successive correction terms defined as

leads to a (classically) corrected QH entropy estimate

The successive correction terms of eq 17 involve integrals
over the probability distributions p(c)(bq

(c)) in eq 15 with
increasing dimensionality K. Note that these terms are all
individually negative (or vanishing). The first correction term
∆Scl,1 involves one-dimensional (1D) integrals and accounts
for anharmonicities in the individual QH modes. The second
correction term ∆Scl,2 involves two-dimensional (2D) inte-
grals and accounts for pairwise (supralinear) correlations
between the QH modes. For simplicity, these two terms will
be renamed ∆Scl

ah and ∆Scl
pc, respectively, to match the notation

used in other studies.11,20,24-28

The following higher order correction terms account for
correlations among QH modes beyond the pairwise ones.
Although the classical QH entropy estimate Scl,o usually
represents a poor approximation to its quantum-mechanical

D_ r ) M_
1/2C_ rM_

1/2 (9)

So ) ∑
m)1

M

s(ω)·((�Er,m)-
1/2) (10)

scl,o(ω) ) kB(1 - ln �pω) (11)

sqm,o(ω) ) kB[ �pω
e�pω - 1

- ln(1 - e-�pω)] (12)

Scl ) -kB[M
2 (1 - ln

�h2

2π ) - ∫ dbq p(bq)ln p(bq)] (13)

Scl,o ) -kB ∑
m)1

M (1 - 1
2

ln
�p2

Fq,m
) (14)

Scl,K ) Scl,o - kB[ K
2M

C(K, M) ∑
m)1

M

(1 + ln 2πFq,m) +

∑
c)1

C(K,M) ∫ dbq
(c)p(c)(bq

(c))ln p(c)(bq
(c))] (15)

∆Scl,K ) Scl,K - Scl,(K-1) (16)

S̃ctd ) Sqm,o + ∑
K)1

M

∆Scl,K (17)
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counterpart Sqm,o, the evaluation of the correction terms at
the classical level remains accurate because anharmonicities
and correlations principally affect the low-frequency QH
modes for which the classical approximation holds.11

The successive correction terms in the series of eq 17 are
increasingly difficult to evaluate because both (i) the number
of terms C(K,M) involved in the evaluation of ∆Scl,K and
(ii) the sparseness in the required multiple-mode probability
distributions p(c)(bq

(c)) increase exponentially with K. For this
reason, their evaluation is restricted in practice to the first
two terms and implies an intrinsic uncertainty on the final
estimate compared to the true single-molecule entropy (i.e.,
persisting in the limit of infinite sampling).

However, note that, in a different context, alternative
approximate formulations to estimate terms of increasing
order mutual information have been proposed and seem to
suggest that the first two correction terms in eq 17 are indeed
dominant.29-31 No study heretofore investigated the con-
vergence properties of these terms along a simulation
trajectory.

Following from eqs 16 and 17, the expressions for the
first two correction terms are

and

leading to the corrected absolute single-molecule entropy
estimate

The relative magnitudes f cl
crc, f cl

ah, and f cl
pc of the correction

terms ∆Scl
crc, ∆Scl

ah, and ∆Scl
pc with respect to the QH entropy

upper-bound Sqm,o (expressed in percent), i.e.

may then serve as a measure for the importance of the
aforementioned corrections.

In practice, the 1D and 2D integrals involved in eqs 18
and 19 are evaluated numerically in the form of sums over
corresponding histograms. It is reasonable to choose the bin
width along a given QH mode in proportion to the width
(first moment) of the probability distribution along this mode
with proportionality factors κ1 and κ2 for 1D and 2D integrals,
respectively. However, κ1 and κ2 values must be selected
carefully in order to keep both finite-sampling and binning
errors to a minimum, i.e., to ensure the independence of the

results on these two parameters.11 For this reason, we
monitored the dependence of such numerical integrals on
the width of histogram bins for increasing periods of time,
as described in section 3.4.

Note, finally, that the absolute single-molecule entropies
so far discussed exclude roto-translational contributions. In
principle, a translational entropy contribution can be included
using the quantum-mechanical expression of the Sackur-
Tetrode equation for a specified standard state of the pressure
(molecule in the gas phase) or of the concentration (molecule
in solution). Similarly, the rotational entropy contribution
could be included using the appropriate quantum-mechanical
expression (e.g., rigid-rotor approximation, based on the
average inertia tensor of the molecule32-34). However, these
two contributions are likely to be highly coupled with each
other and with S̃ctd, i.e., they are not strictly additive, and
their rigorous treatment is therefore still challenging. A recent
study reported on relatively small effects of motional
correlation on changes of reorientational entropy using
selected QH modes from a 1.5 ns simulation of the ubiquitin
protein.35 In the present article, single-molecule configura-
tional entropies refer to entropies excluding roto-translational
effects.

2.3. Computational Details. A 1.1 µs long MD simula-
tion of the cc� peptide (CH3-CO-S-I-R-E-L-E-A-R-I-R-E-
L-E-L-R-I-COO-) at 300 K was performed with the AMBER
9 software,36 the AMBER 99SB parameter set,37 and the
compatible TIP3P water model.38 The simulation was
initialized from the R-helical configuration based on a X-ray
model structure of the cc� coiled coil (PDB ID 1s9z).39

Trajectory snapshots were saved every 10 ps for analysis.
The simulation setup and trajectory analyses are detailed
elsewhere.40 Backbone atom-positional root-mean-square
deviations (RMSD) from the initial folded structure and
radius of gyration (RGYR) were calculated using all CR

atoms.

Independent QH analyses were performed for 22 increas-
ingly long segments of the simulation (differing in length
by 50 ns) by calculation of the solute all-atom mass-weighted
covariance matrix D_ r (eq 9) in Cartesian coordinates after
least-squares fit superposition22 of all configurations onto the
initial structure to eliminate overall translation and rotation
and diagonalization (eq 4 with A_ q

1/2 C_ q A_ q
1/2 ) D_ r). A total of

534 (M ) 3 × 297 - 351 - 6) modes associated with
nonvanishing eigenvalues were considered. After determi-
nation of the QH modes (columns of the matrix V_ r in eq 4;
sorted in order of decreasing eigenvalues, i.e., increasing ωm

frequency in eq 5), the trajectory was projected in this basis
set to obtain the time series of the corresponding QH
coordinates br (eq 7). This first part of the analysis was
performed using the S_correction program as implemented
in the gromos++ module of the GROMOS05 software41 for
biomolecular simulation.

The QH entropy upper bound, Sqm,o (eq 10 with eq 12),
the corrections for mode anharmonicity, ∆Scl

ah (eq 18), and
pairwise supralinear mode correlation, ∆Scl

pc (eq 19), their
sum, ∆Scl

crc (eq 20), the improved absolute single-molecule
entropy, Sctd (eq 20), the relative terms f cl

crc, f cl
ah, and f cl

pc (eq

∆Scl
ah ) -kB[1

2 ∑
m)1

M

(1 + ln 2πFq,m) +

∑
m)1

M ∫ dbq,m p(m)(bq,m)ln p(m)(bq,m)] (18)

∆Scl
pc ) -kB[M - 1

2 ∑
m)1

M

(1 + ln 2πFq,m) +

∑
m)1

M

∑
n)m+1

M

A dbq,mdbq,n p(m,n)(bq,m, bq,n)ln p(m,n)(bq,m, bq,n)] - ∆Scl
ah

(19)

Sctd ) Sqm,o + ∆Scl
crc ) Sqm,o + ∆Scl

ah + ∆Scl
pc (20)

fcl
crc )

100∆Scl
crc

Sqm,o
, fcl

ah )
100∆Scl

ah

Sqm,o
and fcl

pc )
100∆Scl

pc

Sqm,o
(21)
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21), and the sum of the eigenvalues, Tr[F_r] (eq 6), were then
calculated for each of the 22 trajectory segments.

Note that this analysis is computationally intensive be-
cause, as discussed in section 3.3, each of the 22 ∆Scl

ah values
requires the estimation of 534 1D integrals, while each of
the 22 ∆Scl

pc values requires the estimation of 142 311 2D
integrals (eq 15). In addition, for each of these integrals the
optimized proportionality factors κ1 and κ2 were determined
based on multiple integral calculations for an accurate
numerical integration (see section 3.4). As an indication of
the actual computational cost, using an Intel Xeon X5450
3.0 GHz, dedicated software, and the above procedure, each
1D or 2D integral can be estimated with an average CPU
time of 0.07 or 0.21 s, respectively, from 50 ns trajectory
windows. Overall, the analyses presented in this work require
a CPU time that sums up to ∼6 months.

3. Results and Discussion

3.1. Review of Previous Studies. The key findings of
previous studies concerning the uncorrected QH upper bound,
Sqm,o (eq 10 with eq 12), the improved absolute single-
molecule entropy Sctd (eq 20), and the relative magnitude of
the cumulative correction term f cl

crc (eq 21) are summarized
graphically in Figure 1.

These results span systems with different chemical nature:
2 �-peptides in methanol,11 the 11 disaccharides of gluscose
in water,28 the dipalmitoylphosphatidylcholine (DPPC) lipid
in a hydrated bilayer,24 the W191G mutant cavity and its
gating loop within cytochrome c peroxidase in water,20 the
H-ras lipopetide anchor in water or inserted into a model
lipid membrane,27 and the cc�-peptide in water (this study).
In some cases, the QH analysis was also performed separately
for different chemical environments or conformational states
of the molecule, which permits estimating relative entropies,
thereby quantifying the impact of the correction terms on
the thermodynamic process of interest. These processes
include reversible peptide folding (ref 11 and this study),
conformational changes in carbohydrates28 and lipids,24

lipopeptide insertion in a model membrane bilayer,27 ligand
binding to a protein cavity,20 and protein-loop gating.20 The
results presented in Figure 1 are scaled by the number, N,
of atoms to allow for a comparison among molecules of
varying size (the raw data is available as Supporting
Information, Table S1).

Some clear qualitative trends are evident, although a direct
comparison among these studies is not possible due to the
different MD time scales and physicochemical conditions.
In all systems the cumulative correction term ∆Scl

crc (eq 20)
is generally sizable, demonstrating an overall large deviation
from a QH behavior as evaluated up to the pairwise
supralinear level. The corresponding relative magnitudes, f cl

crc,
display values from 9% to 73% of the QH upper-bound value
Sqm,o (Figure 1). In detail, these important cumulative terms
result from the sum of correction terms for mode anharmo-
nicity (∆Scl

ah; eq 18) that are always relatively small (up to
3% of the upper-bound value Sqm,o) and for pairwise
supralinear mode correlation (∆Scl

pc; eq 19) that are always
dominant. The latter correction term has a magnitude that

depends on the physical nature of the molecular motional
correlation experienced by the molecular system in a given
thermodynamic state.

The largest relative corrections, f cl
crc, are expected and

found for intrinsically more ordered systems (Figure 1). This
can be explained by considering that restricted flexibility is
typically promoted by inter- and/or intramolecular interac-
tions, simultaneously inducing increased motional correlation.
For example, the ligand-bound state of the W191G protein
cavity20 displays the largest fcl

crc value (73%), i.e., the
thermodynamic ensemble involving the largest motional
correlations and lowest entropy content among those studied.
On the other end of the spectrum and in line with this
qualitative picture, the smallest fcl

crc values were reported for
the DPPC lipid in a bilayer (9%),24 i.e., the ensemble
characterized by the highest molecular flexibility and thus
the lowest motional correlations. Interestingly, the 11 dis-
accharides of glucose in water28 display high variability and
always large fcl

crc values (45-72%). This behavior can be
explained considering that these molecules involve a reduced
number of degrees of freedom overall and the linkage
between rather stiff glucose rings is the torsion defining major
conformational changes.25,26

Figure 1. Summary of previous studies investigating the
improved absolute single-molecule entropy. The QH entropy
upper-bound Sqm,o (eq 10 with eq 12; empty bars) and the
improved entropy estimate Sctd (eq 20; hatched areas) are
displayed scaled by the number N of system particles. The
relative (%) values of the cumulative correction term f cl

crc (eq
21; bar labels) are reported as a measure of the importance
of the deviation from the QH approximation. From left to right:
two �-peptides in methanol at high temperature (F, folded;
U, unfolded; A, all; T, 298 instead of 340 K),11 the 11 glucose-
based disaccharides (W, free in water),28 dipalmitoylphos-
phatidylcholine, DPPC (I, inserted in a hydrated bilayer),24 the
cavity and its gating loop of the W191G mutant of cytochrome
c peroxidase (K, bound to a K+ ion with closed gating loop;
B, bound to 2-amino-5-methylthiazole with closed gating loop;
O, bound to a K+ ion with open gating loop),20 the H-ras
lipopetide anchor,27 and the cc�-peptide (this study). For the
disaccharides,28 corresponding mean entropy values are
displayed (a vertical bar represents the range of values). See
Supporting Information for details.

3154 J. Chem. Theory Comput., Vol. 5, No. 12, 2009 Baron et al.



These qualitative trends are also in agreement with the
observation that entropy is the measure of PS sampling for
a molecular system. The QH upper bound, Sqm,o, and the
improved absolute single-molecule entropy, Sctd, are esti-
mated based on the PS that has been accessed during a MD
simulation of finite time scale, i.e., only a fraction of the PS
accessible to the system. These time scales ranged from 50
ns (W191G mutant20 showing the lowest entropy) to 25.6
µs (concatenated trajectory of the DPPC lipid,24 showing
the largest entropy). However, this hampers a quantitative
comparison of Sqm,o, Sctd, and ∆Scl

crc values among previous
studies.

Prompted by these observations, the dependence of these
quantities on the extent of accessed PS was assessed on the
microsecond time scale for a peptide test system.

3.2. Convergence of the QH Analysis. The cc� peptide
in water was chosen as a test system to investigate entropy
convergence properties because of its small size and broad

PS accessibility. Figure 2a shows the time series of the
backbone atom-positional root-mean-square deviation (RMSD)
from the folded structure and of the backbone radius of
gyration (RGYR) along a 1.1 µs of MD simulation. The
peptide undergoes several reversible folding/unfolding events
and samples a variety of unfolded configurations and compact
folds.40

The probability distributions p(m)(br,m) of the transformed
QH coordinates br (eq 7) along selected QH modes (m ) 1,
2, 6, 10, 50, and 500) are shown in Figure 3a. The reference
Gaussian functions with identical variances and vanishing
averages are also represented. The actual distributions
become increasingly narrow and similar to the Gaussian
functions for higher m indices, i.e., the corresponding QH
modes become increasingly stiff and harmonic. However,
the distributions along the lowest frequency modes (e.g.,
Figure 3a, m ) 1 or 2) differ significantly from Gaussian
functions and evidently result from the superposition of

Figure 2. cc� peptide dynamics on the microseconds time scale and entropy convergence. (a) The backbone atom-positional
root-mean-square deviation (rmsd; black) from the initial helical fold and of the backbone radius of gyration (RGYR; gray) are
shown along the time, t. The cartoon representations highlight example configurations (oriented with the CH3-CO terminus
down). (b) Build-up curves of the QH entropy upper bound Sqm,o (eqs 10 with 12; dashed line) and of the improved absolute
single-molecule entropy Sctd (eq 20; solid line). Convergence of (c) the cumulative correction term ∆Scl

crc (eq 20) and its contribution
to the free energy T∆Scl

crc, (d) its relative value fcl
crc (eq 21), and (e) the sum of the eigenvalues Tr[F_r] (eq 6).
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Figure 3. Probability distributions along selected components of the QH coordinate b for the cc� peptide. The actual distributions
(gray line) are displayed together with the corresponding Gaussians, i.e., p′o,m(br,m) ) (2πFr,m)-1/2e-1/2 Fr,m

-1 br,m
2
(dashed lines) for

(a) increasing component indices, m, and (b) increasing periods of time, t. The distributions employed for optimal numerical
integration of the actual distributions (eq 18) are also displayed (solid lines). All probability distributions are normalized. Note
that different scaling may be employed for graphical purposes. The letter “u” stands for atomic mass unit.
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multiple off-center Gaussian-like distributions. A similar
observation was previously reported in the context of two
�-peptides in methanol for which two main subensembles
of folded and unfolded configurations could be disentangled
based on the lowest frequency modes (Figures 3-5 in ref
11). In the present case, the most pronounced peaks for the
cc� peptide arise from folded configurations (see Figure 3a,
m ) 1 and 2, leftmost peak).

The time dependence of these results was investigated as
summarized in Figure 3b for the two coordinates br with
lowest frequencies, i.e., those contributing the most to the
total mean-square metric-tensor-weighted fluctuation of the
system (eq 6). The corresponding distributions vary signifi-
cantly with the extent of PS sampling, as revealed by
averaging over the first 0.2, 0.4, and 0.8 µs periods, or over
the entire 1.1 µs ensemble (cf. Figure 3b vs Figure 3a for m
) 1 and 2). Increasing the simulation time results into
broader distributions due to the larger extent of PS sampled.
The intensity of the leftmost peak, corresponding to the
contribution of the folded configurations, clearly reduces
along the simulation initialized from the cc� helical fold and
evolving through a broad range of heterogeneous configura-
tions (Figure 1a). The data indicate that convergence of the
probability distributions associated with the low-frequency
QH coordinates in br requires sampling times longer than 1
µs, considering that such differences persist when comparing
results from the first 800 ns period with the whole 1.1 µs
simulation.

3.3. Entropy Convergence. The entropy convergence for
the cc� peptide in water as a function of sampling time is
illustrated in Figure 2b. The upper-bound curve obtained by
application of the uncorrected QH formula (Sqm,o; eq 10 with
eq 12) is compared to the build-up curve of the improved
absolute single-molecule entropy (Sctd; eq 20). Both curves
require periods of several hundred nanoseconds to reach a
first plateau. Interestingly, the QH upper bound reaches
convergence noticeably faster than the improved absolute
single-molecule entropy. In detail, ∼0.3 or ∼0.7 µs is needed
to sample 90% or 99% of the final Sqm,o estimate of 6922 J
K-1 mol-1, while larger sampling times of ∼0.5 or ∼1.0 µs
are needed to sample 90% or 99% of the final Sctd estimate
of 5916 J K-1 mol-1 (see also Supporting Information, Table
S2). These results clearly demonstrate that the convergence
of the Sqm,o upper bound does not imply the convergence of
the absolute single-molecule entropy, Sctd. In fact, the first
quantity relies on the convergence of linear motional
correlations only (following from the definition of linearly
independent QH modes in eq 7 with eq 8). Instead, as
described below, the second quantity requires in addition the
convergence of supralinear motional correlations. For this
reason, Sctd seems to represent a better indicator of conver-
gence (compared to Sqm,o) for the absolute single-molecule
entropy.

The convergence behavior of the cumulative correction
term, ∆Scl

crc (eq 20), was also monitored (Figure 2c). This
entropy term describes the overall deviation from the QH
model due to mode anharmonicity (∆Scl

ah, eq 18; 4 J K-1

mol-1 after 1.1 µs) and correlation (∆Scl
pc, eq 19; 1002 J K-1

mol-1 after 1.1 µs) effects, associated with all unique

combinations of modes m and n. Its convergence behavior
can be used as well as a measure of uncertainty on the
entropy estimate. For comparison with previous studies
(Figure 1), the time evolution of the corresponding relative
contribution fcl

crc (eq 21) to the uncorrected Sqm,o estimate (eq
10 with eq 12) is also displayed (Figure 2d). In all studies,
the dominant part of this correction arises from QH pairwise
(supralinear) mode correlations (fcl

ah values are <0.05%; see
also Supporting Information, Tables S1 and S2).

Importantly, it is found that the magnitude of the correction
term ∆Scl

crc monotonically decreases from an initial value of
-2745 J K-1 mol-1 (first 0.5 µs sampling) to a final value
of -1006 J K-1 mol-1 (entire 1.1 µs sampling), showing an
initial convergence behavior. This suggests that limited PS
sampling results in both the underestimation of Sqm,o and the
overestimation of ∆Scl

crc (predominantly through its ∆Scl
pc

component), both artifacts leading to an underestimation of
the final absolute single-molecule entropy Sctd.

This result can be explained considering that motional
correlations are larger for a molecular system sampling a
confined part of PS as opposed to sampling of a multiple-
minima landscape. For the cc� test system these results
demonstrate that a limited PS sampling leads to the over-
estimation of corresponding motional correlations, thus of
∆Scl

pc values with respect to that expected for a canonical
ensemble of the same system at thermodynamic equilibrium.

The mass-weigthed root-mean-squared fluctuation, i.e., the
sum of the eigenvalues of the mass-weighted covariance
matrix, Tr[F_r] (eq 9), was also monitored along time as an
independent measure of convergence (Figure 2e). In terms
of Tr[F_r], we note that a first plateau region is reached after
∼1.1 µs (Figure 2e), in line with the Sctd values (Figure 2b).
This observation confirms as well that the cc� peptide is
not trapped in a few local minima. Instead, it explores new
configurations even after several hundreds of nanoseconds
(Figure 2a).

Three important general points are worth noting.
First, the magnitude of the cumulative correction term

∆Scl
crc is large. This is evident when the term is expressed in

the form of its contribution to the system free energy, T∆Scl
crc

(Figure 2c, right axis). The resulting value (302 kJ mol-1

based on 1.1 µs) is about an order of magnitude larger than
the free energy changes of typical (bio)chemical processes.
Thus, although partial cancellation of this term can be
expected for entropy differences between two different
molecular environments or conformational states, small
differences will still lead to large free-energy contributions
(of sign and magnitude difficult to be predicted a priori).
The importance of this correction for reliable entropy
calculations is therefore evident. In addition, this result
suggests that time convergence of the entropy estimate should
be taken into account as well when comparing the efficiency
and accuracy of alternative computational approaches.

Second, we stress that all M per-mode contributions need
to be included for an accurate estimation of eqs 10 and 18
because modes with large m indices (high frequencies) also
contribute to Sqm,o (data not shown; see Figure 8 in ref 11
for a similar analysis). This marks a difference with what is
typically observed for the contribution of a reduced number

Absolute Single-Molecule Entropy: Corrections and Convergence J. Chem. Theory Comput., Vol. 5, No. 12, 2009 3157



of essential modes to the total system fluctuation.23 Due to
the similar mathematical formalism,11 this argument can be
easily demonstrated as well for the calculation of entropies
from normal-mode analysis for systems sampling one local
PS minimum.

Third, the analysis of the leading correction ∆Scl
pc in terms

of all C(2,M) ) [(M - 2)!2!]M! unique pair combinations
reveals that not only modes with low indexes (high ampli-
tudes, low frequencies) contribute substantially. Thus, all
pairs of QH modes need to be considered in eqs 15 and 19.
This requirement arises from the observation that high
correlations can be present among modes with either large
or small m and n indices (low or high frequencies; Figure 12
in ref 11). Interestingly, this behavior was observed for highly
flexible systems (e.g., the cc� peptide of this study or the
reversibly folding �-peptides in ref 11) but not for more rigid
systems confined to a local PS sampling (e.g., the W191G
cavity in ref 20, unpublished results). Whether the latter result
depends on a limited PS accessed or on the physical nature
of QH-mode correlation remains to be addressed.

3.4. Numerical Integration of the Correction Terms.
The analysis presented in this work relies on the numerical
integration of the actual probability distributions p(m)(br,m)
and p(m,n)(br,m,br,n) evaluated based on the MD trajectory (eqs
18 and 19). Two alternative procedures were described to
estimate these 1D and 2D integrals with optimal (nonarbi-
trary) histogram bin widths, as detailed in Appendix C of
ref 11. In this study, optimal parameters κ1

o and κ2
o were

chosen as the midpoint between the intersections of a
horizontal line with the limiting lines for too fine and too
coarse integration at the optimal value of the 1D or 2D
integrals in the graph showing these values as a function of
ln κ1 or ln κ2, as summarized in Figure 4.

Figure 4a shows the values of the 1D integrals for a sample
set of eigenvectors (m ) 1, 50, and 500), evaluated
numerically using different values of κ1. Both limiting lines
are shown, together with the optimal κ1

o values. Values
approaching these limiting curves are incorrect because they
show a dependence of the evaluated integral on the bin size.
However, for each curve, a clear plateau defines the range
of κ1 values for which the integration result is essentially
independent of the bin size. Finite-sampling artifacts affect
the integration with the smallest values of κ1, while coarse-
binning artifacts affect the integration with the largest values.
Note that 1D integrals may be individually negative or
positive.

Figure 4b shows the values of the 2D integrals for a sample
group of eigenvector pairs (m,n ) 1,2; 1,100; 1,500),
evaluated numerically with different values of κ2, together
with the corresponding limiting lines and the optimal κ2

o

values. Here, the plateau regions are narrower and the value
of κ2 has to be chosen more carefully. Note that 2D integrals
are always negative when estimated using the optimal κ2

o

values, but incorrect positive values would be obtained based
on too small κ2 values.

The dependence of these curves on the simulation time
was also monitored (Figure 4). All 1D and 2D curves show
a coarse-integration limit that is essentially independent of
the MD period considered. Yet, they also show that the fine-

integration-limiting curves shift to lower κ1 and κ2 values
upon increasing the simulation time, thus reducing the
dependence on the integration bin size. This effect is more
pronounced for the 2D integrals because they require more
data points than 1D integrals.

Overall, these results demonstrate that the procedure
employed in this work allows estimating both 1D and 2D
integrals of eqs 18 and 19 in a nonarbitrary way as a function
of the simulation time. The presence of plateau regions
independent of the integration bin size for all MD periods
considered shows that the observed change of integral values
along the simulation time largely depends on the extent of
PS sampled yet not on the numerical procedure employed.
A similar analysis performed in the case of corresponding
3D integrals (triplewise combinations of QH modes) revealed
that indeed no such behavior can be achieved, although using
a 1.1 µs trajectory. In practice, eq 15 can be only estimated
for the first two terms owing to finite sampling artifacts and
data sparseness.

Figure 4. Dependence of the numerical integration of prob-
ability distributions on the width of histogram bins for increas-
ing periods of time, t. (a) Integrals over the 1D distributions
involved in eq 18 are shown for eigenvectors 1 (circles), 50
(squares), and 500 (crosses). (b) Integrals over the 2D
distributions involved in eq 19 are shown for eigenvector pairs
1,2 (circles), 1,100 (squares), and 1,500 (crosses). The results
are displayed for the whole ensemble (1.1 µs; black) or t )
200 (red), 400 (green), 600 (blue), 800 (cyan) ns as a function
of ln κ1 (a) or ln κ2 (b), where κ is the ratio of the bin width
along each dimension to the corresponding distribution width.
The middle point between a pair of limiting lines for too fine
(left side) and too coarse (right side) numerical integrations
(dashed lines) defines optimal κ1

o or κ2
o values. A black

dot-dashed reference line is drawn at zero.
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4. Conclusion

The theory and practical implementation of an approach
recently proposed11 to estimate improved configurational
entropies from quasi-harmonic analysis of molecular dynam-
ics simulations are briefly reviewed. It involves the calcula-
tion of correction terms of increasingly high order to account
for deviations from the quasi-harmonic approximation in
frustrated molecular systems. The convergence properties of
the absolute single-molecule entropy are critically investi-
gated using microsecond molecular dynamics simulation of
the cc� peptide in water. Prompted by the comparison of
the results with previous studies addressing mode anharmo-
nicity and correlation effects, the convergence behavior of
individual quasi-harmonic modes, of the absolute single-
molecule entropy, and of the correction terms for anharmo-
nicity and pairwise (supralinear) correlations are analyzed.
Our data provide a number of new insights to tackle the
challenge of accurate entropy estimation by computer
simulation.

In line with a previous study,11 the probability distributions
associated with components of the quasi-harmonic coordi-
nates only deviate significantly from Gaussian functions for
the first few components, resembling the behavior observed
in the different context of a single-atom displacement for
an R-helical peptide42 and of essential modes for protein
dynamics.23 For these components, the probability distribu-
tions result from a superposition of clearly distinguishable
contributions from the folded and unfolded ensembles.
However, it is shown that the components of these eigen-
vectors converge slowly (>1 µs), consistent with the observa-
tion that the cc� peptide steadily explores new configurations.

In line with previous studies,11,20,25,26,28 the entropic
contribution of anharmonicity is small while the pairwise
(supralinear) correlation correction to the entropy is large.
The deviation from the quasi-harmonic assumption affects
more significantly conformational states dominated by high
motional correlation. Using microsecond molecular dynamics
simulation of a peptide test system we show that limited
phase-space sampling results in an overestimation of cor-
relation effects, and we discuss its implications for entropy
estimation.

This study demonstrates that the convergence of the quasi-
harmonic upper-bound entropy with simulation time does
not imply the convergence of the system absolute single-
molecule entropy. As a consequence, our study also suggests
that the convergence of the absolute single-molecule entropy
rather than that of the quasi-harmonic upper bound should
be preferably monitored. Because the cumulative correction
term accounting for both mode anharmonicity and pairwise
(supralinear) correlation effects converges slowly and mono-
tonically decreases, previous studies based on shorter time
scales may have, in some cases, partly overestimated this
correction term, thus leading to underestimated absolute
entropy estimates.

Overall, the present study emphasizes the need of sufficient
phase-space sampling to estimate entropic contributions from
computer simulations. Ideally, only thermodynamic en-
sembles at equilibrium should be considered to this end, i.e.,
full phase-space sampling obtained from simulations on time

scales of several microseconds. In practice, we suggest that
enhanced sampling techniques28,43 and/or concatenated cop-
ies of independent simulation trajectories21,24 will be useful
tools to alleviate these problems in the future if properly
combined with the correction terms used herein.28 This
strategy will open the possibility to include as well
correlation effects of higher order than the pairwise
(supralinear) explicitly considered in this study. A bright
future opens for the estimation of accurate thermodynamic
properties for biomolecular systems using chemical theory
and computation.
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(1) Gõ, N.; Scheraga, H. A. J. Chem. Phys. 1969, 51, 4751.

(2) Karplus, M.; Kushick, J. N. Macromolecules 1981, 14, 325.

(3) Di Nola, A.; Berendsen, H. J. C.; Edholm, O. Macromolecules
1984, 17, 2044.

(4) Edholm, O.; Berendsen, H. J. C. Mol. Phys. 1984, 51, 1011.

(5) Rojas, O. L.; Levy, R. M.; Szabo, A. J. Chem. Phys. 1986,
85, 1037.

(6) Schlitter, J. Chem. Phys. Lett. 1993, 215, 617.

(7) Schafer, H.; Mark, A. E.; van Gunsteren, W. F. J. Chem.
Phys. 2000, 113, 7809.

(8) Andricioaei, I.; Karplus, M. J. Chem. Phys. 2001, 115, 6289.

(9) Reinhardt, W. P.; Miller, M. A.; Amon, L. M. Acc. Chem.
Res. 2001, 34, 607.

(10) Chang, C. E.; Chen, W.; Gilson, M. K. J. Chem. Theory
Comput. 2005, 1, 1017.

(11) Baron, R.; van Gunsteren, W. F.; Hünenberger, P. H. Trends
Phys. Chem. 2006, 11, 87.

(12) Wang, J.; Bruschweiler, R. J. Chem. Theory Comput. 2006,
2, 18.

(13) Chang, C. E.; Chen, W.; Gilson, M. K. Proc. Natl. Acad.
Sci. U.S.A. 2007, 104, 1534.

(14) Killian, B. J.; Yundenfreund Kravitz, J.; Gilson, M. K.
J. Chem. Phys. 2007, 127, 24107.

(15) Hnizdo, V.; Tan, J.; Killian, B. J.; Gilson, M. K. J. Comput.
Chem. 2008, 29, 1605.

(16) Carlsson, J.; Åqvist, J. Phys. Chem. Chem. Phys. 2006, 8,
5385.

Absolute Single-Molecule Entropy: Corrections and Convergence J. Chem. Theory Comput., Vol. 5, No. 12, 2009 3159



(17) van Gunsteren, W. F.; Bakowies, D.; Baron, R.; Chan-
drasekhar, I.; Christen, M.; Daura, X.; Gee, P.; Geerke, D. P.;
Glattli, A.; Hünenberger, P. H.; Kastenholz, M. A.; Oosten-
brink, C.; Schenk, M.; Trzesniak, D.; van der Vegt, N. F.;
Yu, H. B.Angew. Chem., Int. Ed. 2006, 45, 4064.

(18) Meirovitch, H. Curr. Opin. Struct. Biol. 2007, 17, 181.

(19) Meirovitch, H.; Cheluvaraja, S.; White, R. P. Curr. Protein
Pept. Sci. 2009, 10, 229.

(20) Baron, R.; McCammon, J. A. ChemPhysChem 2008, 9, 983.

(21) Baron, R.; de Vries, A. H.; Hünenberger, P. H.; van Gunsteren,
W. F. J. Phys. Chem. B 2006, 110, 8464.

(22) McLachlan, A. D. J. Mol. Biol. 1979, 128, 49.

(23) Amadei, A.; Linssen, A. B. M.; Berendsen, H. J. C. Proteins
1993, 17, 412.

(24) Baron, R.; de Vries, A. H.; Hünenberger, P. H.; van Gunsteren,
W. F. J. Phys. Chem. B 2006, 110, 15602.

(25) Pereira, C. S.; Kony, D.; Baron, R.; Muller, M.; van Gunsteren,
W. F.; Hünenberger, P. H. Biophys. J. 2006, 90, 4337.

(26) Pereira, C. S.; Kony, D.; Baron, R.; Muller, M.; van Gunsteren,
W. F.; Hünenberger, P. H. Biophys. J. 2007, 93, 706.

(27) Gorfe, A. A.; Baron, R.; McCammon, J. A. Biophys. J. 2008,
95, 3269.

(28) Peric-Hassler, L.; Hansen, H. S.; Baron, R.; Hünenberger, P. H.
Manuscript in preparation.

(29) Somani, S.; Killian, B. J.; Gilson, M. K. J. Chem. Phys. 2009,
130, 134102.

(30) Matsuda, H. Phys. ReV. E 2000, 62, 3096.

(31) Numata, J.; Wan, M.; Knapp, E. W. Genome Inform. 2007,
18, 192.

(32) Carlsson, J.; Åqvist, J. J. Phys. Chem. B 2005, 109, 6448.

(33) Darian, E.; Hnizdo, V.; Fedorowicz, A.; Singh, H.; Demchuk,
E. J. Comput. Chem. 2005, 26, 651.

(34) Lu, B. Z.; Wong, C. F. Biopolymers 2005, 79, 277.

(35) Prompers, J. J.; Bruschweiler, R. J. Phys. Chem. B 2000,
104, 11416.

(36) Case, D. A.; Darden, T.; Cheatham, T. III; Simmerling, C.;
Wang, J.; Duke, R.; Luo, R.; Merz, K.; Pearlman, D.; Crowley,
M.; Walker, R.; Zhang, W.; Wang, B.; Hayik, A.; Roiberg,
A.; Seabra, G.; Wong, K.; Paesani, F.; Wu, X.; Brozell, S.;
Tsui, V.; Gohlke, H.; Yang, L.; Tan, C.; Morgan, J.; Hornak,
V.; Cui, G.; Beroza, P.; Matthews, D.; Schfmeister, C.; Ross,
W.; Kollman, P. AMBER 9; University of California: San
Francisco 2006.

(37) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.;
Simmerling, C. Proteins 2006, 65, 712.

(38) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey,
R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926.

(39) Kammerer, R. A.; Kostrewa, D.; Zurdo, J.; Detken, A.; Garcia-
Echeverria, C.; Green, J. D.; Muller, S. A.; Meier, B. H.;
Winkler, F. K.; Dobson, C. M.; Steinmetz, M. O. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 4435.

(40) Baron, R.; de Oliveira, C. A. F.; McCammon, J. A. Manuscript
in preparation.

(41) Christen, M.; Hünenberger, P. H.; Bakowies, D.; Baron, R.;
Burgi, R.; Geerke, D. P.; Heinz, T. N.; Kastenholz, M. A.;
Krautler, V.; Oostenbrink, C.; Peter, C.; Trzesniak, D.; van
Gunsteren, W. F. J. Comput. Chem. 2005, 26, 1719.

(42) Perahia, D.; Levy, R. M.; Karplus, M. Biopolymers 1990,
29, 645.

(43) Minh, D. D.; Hamelberg, D.; McCammon, J. A. J. Chem.
Phys. 2007, 127, 154105.

CT900373Z

3160 J. Chem. Theory Comput., Vol. 5, No. 12, 2009 Baron et al.



Performance of Kinetic Energy Functionals for
Interaction Energies in a Subsystem Formulation of

Density Functional Theory
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Abstract: We have tested the performance of a large set of kinetic energy density functionals
of the local density approximation (LDA), the gradient expansion approximation (GEA), and the
generalized gradient approximation (GGA) for the calculation of interaction energies within a
subsystem approach to density functional theory. Our results have been obtained with a new
implementation of interaction energies for frozen-density embedding into the Amsterdam Density
Functional program. We present data for a representative sample of 39 intermolecular complexes
and 15 transition metal coordination compounds with interaction energies spanning the range
from -1 to -783 kcal/mol. This is the first time that kinetic energy functionals have been tested
for such strong interaction energies as the ligand-metal bonds in the investigated coordination
compounds. We confirm earlier work that GGA functionals offer an improvement over the LDA
and are particularly well suited for weak interactions like hydrogen bonds. We do, however, not
find a particular reason to prefer any of the GGA functionals over another. Functionals derived
from the GEA in general perform worse for all of the weaker interactions and cannot be
recommended. An unexpectedly good performance is found for the coordination compounds,
in particular with the GEA-derived functionals. However, the presently available kinetic energy
functionals cannot be applied in cases in which a density redistribution between the subsystems
leads to strongly overlapping subsystem electron densities.

1. Introduction

The quantum chemical study of large molecular systems which
are of importance in life sciences or nanotechnology requires
the use of multilevel methods which can treat different parts of
the total system using different approximations. The frozen-
density-embedding (FDE) scheme1,2 first developed by Weso-
lowski and Warshel is such a promising multilevel method. It
has already been applied in a number of studies, for example,

of solvent effects on absorption spectra,3-5 electron spin
resonance parameters,6 and nuclear magnetic resonance chemi-
cal shifts.7

FDE is based on a subsystem formulation8 of density
functional theory (DFT),9 in which a large system is
assembled from an arbitrary number of subsystems which
are coupled by an effective embedding potential. In this way,
the ground-state electron density is obtained as a superposi-
tion of subsystem electron densities, and the ground-state
energy is obtained as a sum of subsystem energies and an
interaction energy. FDE can be regarded as an approximation
to Kohn-Sham (KS) DFT in which part of the kinetic energy
of the noninteracting reference system is calculated via an
explicit density functional. Making the theory formally exact
therefore requires knowledge of the exact functional (Ts) for
this energy in addition to the functional for the exchange-
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correlation (XC) energy that is already used in KS-DFT. In
practice, one employs approximate functionals for both
energy terms.

Although it is only a small fraction of the total kinetic
energy which has to be approximated in FDE, the limited
accuracy of available functionals puts severe restrictions on
the possible partitioning of a system and limits the accuracy
of numerical results which can be obtained with standard
FDE calculations. In general, the error with respect to KS-
DFT results becomes larger with increasing strength of the
interactions between the subsystems. For example, the
inclusion of covalent bonds between subsystems is at present
only possible with an extension of the simple FDE scheme10

in which capping groups are introduced to improve the
description.

Most published applications of FDE employ either the
Thomas-Fermi (TF) kinetic energy functional11,12 or the
generalized gradient approximation (GGA) functional
PW91k,13,14 which have been shown to deliver good ac-
curacy for subsystems with weak interactions and hydrogen
bonds.14-21 Studies regarding the accuracy of kinetic energy
functionals for FDE interaction energies, however, have
either focused on one type of weak interactions for a small
set of systems,14,22 been limited to a restricted number of
approximate kinetic energy functionals,20,21 or both.14-16,19,23,24

The aim of this contribution is to bridge this gap and
provide a systematic analysis of the performance of existing
kinetic energy functionals in the context of FDE. To this
end, we have extended a flexible and efficient implementa-
tion25 of FDE in the Amsterdam Density Functional program
package (ADF)26-28 such that interaction energies can be
computed. We have applied this implementation to a diverse
range of data sets of molecular complexes covering not only
weakly interacting and hydrogen-bonded systems but also
transition metal complexes with coordination bonds.

In the next section, we sketch the aspects of the FDE
formalism which are of importance for further discussion.
Section 3 continues with a discussion of the form of the
kinetic energy functionals which we have investigated in this
study. In section 4, we present the data sets which we have
used for assessing the performance of the kinetic energy
functionals. Section 5 contains the computational details of
our study. In section 6, we discuss the results which we have
obtained with our implementation. We first analyze the
convergence behavior of the interaction energies with respect
to the optimization of the electron densities in the individual
subsystems. Then, we assess the accuracy of FDE in
combination with different kinetic energy functionals with
respect to KS-DFT. Section 7 summarizes our findings.

2. Frozen-Density Embedding

The starting point for FDE1,2,25 is a subsystem formulation
of DFT,8 in which the total system is partitioned into N
subsystems such that the total electron density Ftot(r) is
represented as the sum of the subsystem electron densities
F(i)(r):

with each subsystem containing a fixed integer number of
electrons. The total electronic DFT energy for such a
partitioning is most conveniently written as

where E(i)[F(i)] is the standard KS-DFT total energy of
subsystem i:

Here, νnuc
(i) (r) is the electrostatic potential of the nuclei in

subsystem i and Exc[F(i)] is the XC energy of subsystem i.
The interaction energy between the subsystems is then given
as

where the nonadditive kinetic energy Ts
nad[F(1), ..., F(N)] and

the nonadditive XC energy Exc
nad[F(1), ..., F(N)] are defined as

and

In these expressions, Ts[F] is the kinetic energy of the
reference system of noninteracting electrons, which can be
calculated exactly if the KS orbitals are known for all
densities. Within FDE, however, one would like to determine
KS orbitals only for the individual subsystems. This goal
can be realized by employing an approximate kinetic energy
functional to evaluate Ts

nad[F(1), ..., F(N)].
Minimization of the total energy functional of eq 2 with

respect to the electron density F(i) of a subsystem i while
keeping the electron density of all other subsystems frozen
(fixed) leads to a set of coupled KS-like equations:

from which the KS orbitals {ψk
(i)} and the associated electron

density F(i) of subsystem i can be determined. The KS
effective potential νeff, KS

(i) [F(i)] contains the usual terms of the
electrostatic potential of the nuclei, the Hartree potential, and

Ftot(r) ) ∑
i

N

F(i)(r) (1)

E[F(1), ..., F(N)] ) ∑
i

N

E(i)[F(i)] + Eint[F
(1), ..., F(N)] (2)

E(i)[F(i)] ) Ts[F
(i)] + ∫ νnuc

(i) (r) F(i)(r) dr +

1
2 ∫ F(i)(r) F(i)(r′)

|r - r′| dr dr′ + Exc[F
(i)] (3)

Eint[F
(1), ..., F(N)] ) ∑

i*j

N ∫ νnuc
(i) (r) F(j)(r) dr +

∑
i<j

N ∫ F(i)(r) F(j)(r′)
|r - r′| dr dr′ + TS

nad[F(1), ..., F(N)] +

Exc
nad[F(1), ..., F(N)] (4)

Ts
nad[F(1), ..., F(N)] ) Ts[F

tot] - ∑
i

N

Ts[F
(i)] (5)

Exc
nad[F(1), ..., F(N)] ) Exc[F

tot] - ∑
i

N

Exc[F
(i)] (6)

[-1
2

∇2 + νeff,KS
(i) [F(i)](r) + νemb

(i) [F(1), ..., F(N)](r)]ψk
(i)(r) )

εk
(i)ψk

(i)(r) (7)
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the XC potential of subsystem i. The effective embedding
potential νemb

(i) [F(1), ..., F(N)] describes the effect of all other
subsystems on subsystem i and reads

In addition to the electrostatic potential of the nuclei and
electrons of the environment, it contains contributions from
the nonadditive XC functional and the nonadditive kinetic
energy functional.

In order to be able to yield the exact ground-state electron
density Ftot, the subsystem electron density F(i) ) Ftot -
∑j, j*i

N F(j) has to be positive and noninteracting ν -representable.
In practice, it will be difficult to initialize the frozen subsystem
densities such that the positivity condition for the active density
is fulfilled. In such cases, the subsystem densities have to be
determined in an iterative fashion.8 This can be achieved by
so-called “freeze-and-thaw” cycles,29 in which the electron
density of one active subsystem is updated and then frozen again
while the electron density of the next subsystem is determined.
This procedure can be repeated in a self-consistent fashion until
the electron densities of all subsystems are converged.

If the exact density functional for the KS kinetic energy Ts[F]
were known, the freeze-and-thaw procedure of FDE would
represent an alternative way to determine the density of the total
KS system. This means that convergence of this procedure
should, irrespective of the employed XC functional, lead to the
same ground state electron density and electronic ground state
energy as with conventional KS-DFT (for the chosen XC
functional). In an exact theory, it would thereby be possible to
partition the density in different ways over the subsystems, the
different choices resulting in differences in the individual
subsystem energies that are compensated by differences in the
interaction energy to yield a consistent total energy. [One could
also think of a flexible setup in which the number of electrons
on each subsystem is allowed to vary dynamically.] With the
approximate kinetic energy functionals used in practical calcula-
tions, not all partitionings are meaningful, however. As a rule
of thumb, one should avoid situations in which the subsystem
densities overlap strongly and yield a large value of Ts

nad.30

While this is easy to avoid for the starting densities, errors in
the embedding potential may lead to an overestimation of charge
transfer effects in a freeze-and-thaw optimization, bringing
the partitioning outside the realm of applicability of the
approximate functional.

3. Kinetic Energy Functionals

Several approximate types of kinetic energy functionals are
available nowadays, and a comprehensive review is available
in reference 31. An overview on the use of such functionals
in FDE can be found, for example, in references 2 and 22.
We therefore will restrict ourselves to a short overview on
the functionals which we have investigated in this work. It

should therefore be noted that among others the TF functional
was originally constructed to describe the total kinetic energy
T rather than the KS kinetic energy Ts of the noninteracting
reference system that is applicable when the correlation-kinetic
energy Tc is implicitly included in the XC energy Exc.

31

We would, furthermore, like to point out that there does not
seem to exist a correlation between the accuracy of approximate
kinetic energy functionals for the total KS kinetic energy Ts

and kinetic energy differences such as the nonadditive kinetic
energy Ts

nad.2,30-32 For instance, some of the functionals
investigated in this work fail to give binding of some simple
molecules if used in orbital-free DFT with the correct KS
density (for a given XC functional) as input.33 However, this
does not mean that these functionals will perform equally as
bad if used to approximate only Ts

nad.
We have considered kinetic energy functionals which, for

the general case of spin-polarized systems with spin density
Fσ (σ ) R, �), can be written in the following form:

Here, CF ) (3/10)(3π2)2/3 ≈ 2.871 is the TF constant. FT(sσ)
denotes the enhancement factor, which is a function of the
reduced density gradient

with the Fermi vector

The analytic form of FT(sσ) determines the gradient
dependence of the approximate kinetic energy functional.

3.1. Local Density Approximation (LDA). Just as for
the total kinetic energy, the dominant part of the nonadditive
kinetic energy Ts

nad can be derived from the LDA, that is,
TF theory.14,22 The TF enhancement factor is given as

3.2. Gradient Expansion Approximation (GEA). For
slowly varying electron densities, the kinetic energy can be
represented by a gradient expansion34,35 in which TF theory
represents the zeroth-order term. Truncation to second order
yields the TF functional with von Weizsäcker correction, for
which the enhancement factor takes the form

E00. A kinetic energy functional which represents the GEA
up to fourth order and for which the enhancement factor takes
the form

has been proposed by Ernzerhof.32

P92. Perdew proposed a functional which reproduces the
GEA up to sixth order.36 The enhancement factor

νemb
(i) [F(1), ..., F(N)](r) ) ∑

j,j*i

N ∫ νnuc
(j) (r) +

∑
j,j*i

N ∫ F(j)(r′)
|r - r′| dr′ +

δExc[F]

δF |
F)Ftot(r)

-
δExc[F]

δF |
F)F(i)(r)

+

δTs[F]

δF |
F)Ftot(r)

-
δTs[F]

δF |
F)F(i)(r)

(8)

Ts
approx[F] ) 22/3CF ∑

σ)R,�
∫ Fσ

5/3(r) FT(sσ(r)) dr (9)

sσ(r) )
|∇Fσ(r)|

2kF,σ(r) Fσ(r)
(10)

kF,σ(r) ) [6π2Fσ(r)]1/3 (11)

FTF(sσ) ) 1 (12)

FTF9W(sσ) ) 1 + 5
27

sσ
2 (13)

FE00(sσ) )
135 + 28sσ

2 + 5sσ
4

135 + 3sσ
2

(14)
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has the same functional form as the E00 enhancement factor
and differs only in its parameters.

OL1 and OL2. On the basis of scaling properties of Ts[F],
Ou-Yang and Levy37 proposed two kinetic energy functionals
which replace fourth- and higher-order GEA terms with
approximate, simple expressions. The corresponding en-
hancement factors take the following forms:

and

where b ) 2(3π2)1/3, C4
(1) ) 6.77 × 10-3 and C4

(2) ) 8.87 ×
10-2.

3.3. Generalized Gradient Approximation (GGA). The
GGA seems at present to be the most promising and
successful route to approximate kinetic energy functionals.
According to a conjecture of Lee, Lee, and Parr (LLP), the
kinetic energy and the exchange energy can be considered
“conjoint” such that kinetic energy functionals may be
constructed using the same analytical function for the
enhancement factor as used in GGA exchange energy
functionals.38 It should be kept in mind that this conjointness
conjecture is not strictly correct.33

LLP91. LLP suggested the use of the analytical form of
the Becke (B88) exchange functional,39 but reparametrized
for the kinetic energy38

with R ) 4.4188 × 10-3 and γ ) 2.53 × 10-2.
PW86. The Perdew-Wang (PW86) exchange functional40

with enhancement factor

has been tested for the kinetic energy by Lacks and Gordon.41

PW91k. The functional which has been applied most
widely in applications of FDE has been dubbed PW91k. It
uses the analytic form of the enhancement factor of the
Perdew-Wang (PW91) exchange functional42 with param-
eters optimized for the kinetic energy by Lembarki and
Chermette (LC94).13 The application of this kinetic energy
functional in the context of FDE was investigated by
Wesolowski and co-workers,14,22 who analyzed both the
original PW91 as well as the LC94 enhancement factor and
found that both improved upon earlier functionals due to the
better behavior of these functions at large values of sσ.

with A1 ) 0.093907, A2 ) 0.26608, A3 ) 0.0809615, A4 )
100.0, A ) 76.320, and B1 ) 0.57767 × 10-4.

TW02. The analytic form of the enhancement factor
suggested by Becke43 and used in the Perdew-Burke-
Ernzerhof (PBE) functional44,45 has been reparametrized by
Tran and Wesolowski to reproduce the kinetic energy of He
and Xe atoms.46 It is given as

with κ ) 0.8438 and µ ) 0.2319.
T92. The kinetic energy functional of Thakkar47

with � ) 0.0055 and C4 ) 0.072 uses a linear combination
of the enhancement factor of the B88 exchange and OL2
kinetic energy functionals and has been fitted to the kinetic
energy of 77 molecules.

PBE2, PBE3, and PBE4. A different route was taken by
Karasiev et al.33 They reparametrized kinetic energy func-
tionals to better reproduce forces, that is, the shape of the
KS potential energy surface instead of focusing on the
accuracy of total energies. Although it cannot be expected
that these functionals perform well for absolute energies, one
might hope to obtain good relative energies (like the bond
energies studied in this work). To investigate the feasibility
of this ansatz, we have included these functionals in our
study. The enhancement factors considered are of the two-
parameter PBE form43-45 and the three- and four-parameter
series expansions of the PBE form,48 called PBEn (n )
2, 3, 4) in the following. They can be written as

where a(1) ) 0.2942, C1
(1) ) 2.0309, a(2) ) 4.1355, C1

(2) )
-3.7425, C2

(2) ) 50.258, a(3) ) 1.7107, C1
(3) ) -7.2333, C2

(3)

) 61.645, and C3
(3) ) -93.683. Although the parameters

have been determined for a very limited set of molecules,
some transferability of the functionals was found when
applied to CO, a molecule which was not included in the
training set.33

4. Data Sets

Truhlar and co-workers have recently suggested different sets
of molecular complexes for testing XC functionals in KS-
DFT. Some of these test sets have already been employed
by Dulak and Wesolowski to assess the accuracy of FDE
interaction energies for two combinations of XC and kinetic

FP92(sσ) )
1 + 88.3960sσ

2 + 16.3683sσ
4

1 + 88.2108sσ
2

(15)

FOL1(sσ) ) 1 + 5
27

sσ
2 +

C4
(1)

CF
bsσ (16)

FOL2(sσ) ) 1 + 5
27

sσ
2 +

C4
(2)

CF

bsσ

(1 + 4bsσ)
(17)

FLLP91(sσ) ) 1 + R
(21/3bsσ)2

1 + γ(21/3bsσ) sinh-1(21/3bsσ)
(18)

FPW86(sσ) ) (1 + 1.296sσ
2 + 14sσ

4 + 0.2sσ
6)1/15

(19)

FPW91k(sσ) ) 1 +
[A2 - A3 exp(-A4sσ

2)]sσ
2 - B1sσ

4

1 + A1sσ sinh-1(Asσ) + B1sσ
4

(20)

FTW02(sσ) ) 1 +
µsσ

2

1 + (µ/κ)sσ
2

(21)

FT92(sσ) ) 1 +
�(21/3bsσ)2

1 + γ(21/3bsσ) sinh-1(21/3bsσ)
-

C4(2
1/3bsσ)

1 + 4bsσ
(22)

FPBEn(sσ) ) 1 + ∑
i)1

n-1

Ci
(n)[ sσ

2

1 + a(n)sσ
2]i

(23)
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energy functionals in FDE.21 They have confirmed older
studies by Wesolowski and co-workers15,16,19,21,23,24 and
shown that FDE can outperform KS-DFT for interaction
energies if an appropriate combination of functionals for the
XC energy and the nonadditive kinetic energy is chosen. It
is clear, however, that these encouraging findings are the
result of an error cancellation between the applied XC and
kinetic energy functionals. The accuracy of FDE for a given
combination of functionals with respect to highly accurate
interaction energies derived from wave function-based
methods is system-dependent. Comparison of the combina-
tions (i) LDA for both XC and nonadditive kinetic energy
and (ii) PW9142 as a XC functional and PW91k for the
nonadditive kinetic energy has shown21 that, for hydrogen-,
dipolar- and weakly bonded dimers combination (i) performs
well, while combination (ii) performs worse or even quali-
tatively wrong. For π-stacking complexes and complexes
with charge-transfer character, however, the situation is
reversed, and combination (ii) yields results which are in
better agreement with the reference data.

These results21 are important for practical purposes since
they show for which type of systems we can expect
maximum error cancellation with the combination of func-
tionals under investigation. They do not, however, directly
assess the performance of a given kinetic energy functional
for FDE. With the exact kinetic energy functional, FDE
should reproduce the KS-DFT results and not perform better.
We therefore assess the accuracy of kinetic energy func-
tionals for FDE by comparison to the corresponding KS-
DFT results obtained with the same XC functional as in the
FDE calculations.

We use Truhlar’s NC31/05 data set of noncovalently
bound molecular complexes with equilibrium geometries
obtained from benchmark wave-function-based calcula-
tions.49,50 The strength of interactions in this data set covers
the range up to 16.15 kcal/mol at the benchmark level of
theory. We use the fixed geometries of the benchmark
equilibrium structures of the monomers and dimers from this
data set to analyze the accuracy of FDE interaction energies
obtained with different kinetic energy functionals in com-
parison to the corresponding KS-DFT results. While KS-
DFT with the presently available GGA XC functionals does
not adequately describe interactions between the molecular
fragments in this data set, which are dominated by dispersion
forces, a comparison of FDE to supermolecular KS-DFT still
allows us to assess the accuracy of the kinetic energy
functionals. In addition, if the KS-DFT results are recovered
by FDE, existing empirical corrections for dispersion forces
like the very successful DFT-D correction51 can be added.
The complexes in the NC31/05 data set are further subdi-
vided into five groups:49,50

• HB6/04 (hydrogen bond). (NH3)2, (HF)2, (H2O)2,
NH3 · · ·H2O, (HCONH2)2, and (HCOOH)2 (benchmark in-
teraction energies ranging from -3.15 to -16.15 kcal/mol)

• CT7/04 (charge transfer). C2H4 · · ·F2, NH3 · · ·F2,
C2H2 · · ·ClF, HCN · · ·ClF, NH3 · · ·Cl2, H2O · · ·ClF, and
NH3 · · ·ClF (benchmark interaction energies ranging from
-1.06 to -10.62 kcal/mol)

• DI6/04 (dipole interaction). (H2S)2, (HCl)2, HCl · · ·H2S,
CH3Cl · · ·HCl, HCN · · ·CH3SH, and CH3SH · · ·HCl (bench-
mark interaction energies ranging from -1.66 to -4.16 kcal/
mol)

• WI7/05 (weak interaction). HeNe, HeAr, (Ne)2, NeAr,
CH4 · · ·Ne, C6H6 · · ·Ne, and (CH4)2 (benchmark interaction
energies ranging from -0.04 to -0.51 kcal/mol)

• PPS5/05 (π-π stacking). (C2H2)2, (C2H4)2, sandwich (S)
(C6H6)2, T-shaped (T) (C6H6)2, and parallel-displaced (PD)
(C6H6)2 (benchmark interaction energies ranging from -1.34
to -2.78 kcal/mol)

In addition, we use the BP8/05 data set52 of stacking
interactions in six nucleic acid base complexes and hydrogen-
bonding interactions in two Watson-Crick (WC) type base
pairs.

• BP8/05 (nucleobase pairs). Adenine-thymine (A · · ·T),
guanine-cytosine (G · · ·C), antiparallel cytosine dimer (anti
C · · ·C), displaced cytosine dimer (displ C · · ·C), parallel
cytosine dimer (par C · · ·C), uracil dimer (U · · ·U), WC
adenine-thymine (WC A · · ·T), and WC guanine-cytosine
(WC G · · ·C) (benchmark interaction energies ranging from
-2.45 to -28.80 kcal/mol)

In order to check the performance of the kinetic energy
functionals for stronger interactions than contained in the
databases listed above, we added data sets containing
coordination compounds to the list of systems to be tested.
For this purpose, we employ a data set consisting of five
complexes of Zn2+ with simple inorganic ligands, which we
will refer to as Zn5/08. The structures have been obtained
from a data set which has recently been compiled by Amin
and Truhlar for the purpose of testing the performance of
density functionals.53 As did those authors, we studied the
dissociation of the complexes into the Zn2+ ion and the ligand
and, in the case of Zn(OH)2, into Zn(OH)+ and OH-.

• Zn5/08 (Zn2+ coordination complexes). Zn(NH3)2+,
Zn(H2O)2+, ZnOH+, Zn(OH)2, and Zn(SCH3)+ (benchmark
interaction energies ranging from -96.83 to -428.18 kcal/
mol)

Finally, we have put together a data set of transition metal
coordination complexes with ligands of the spectrochemical
series. In order to prevent problems with high-spin/low-spin
splittings in transition metal complexes, which are in general
difficult to treat accurately with DFT in any case, we focus
on octahedral Cr(III) complexes, which in general have a
quadruplet ground state due to the three unpaired electrons
in the metal t2g orbitals. The structures have been obtained
as described in section 5, and we studied the interaction
energies between the ligand Ln- and the corresponding
[Cr(OH2)5]3+ fragment, that is, the ligand bonding energies.
The accuracy of these energies is indicative, for example,
of the applicability to the study of ligand exchange reactions.

• Cr10/09. [Cr(OH2)5L](3-n)+, where n is the charge of the
ligand Ln- and the ligands are (in order of increasing ligand
field splitting parameter) I-, Br-, S2-, Cl-, F-, OH-, H2O,
NH3, NO2

-, and CO (interaction energies ranging from
-43.83 to -782.78 kcal/mol at the PBE/TZ2P level of
theory)
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5. Computational Details

All calculations were performed with a development version
of the ADF program26-28 using the gradient-corrected
PBE44,45 XC functional. We used the TZ2P basis set of the
ADF basis set library, which is a triple-	 valence/double-	
core all-electron Slater basis augmented with two sets of
polarization functions. The ADF default settings for the
numerical integration grid and the self-consistent field (SCF)
procedure were used. Geometries of the Cr(III) complexes
were considered as converged if the maximum element of
the gradient was below 10-4 au/Å.

For the FDE calculations, we used the approximate kinetic
energy functionals described in section 3. We tested both a
monomolecular expansion basis, denoted as FDE(m), in
which only basis functions located on the active subsystem
are used for the expansion of its KS orbitals, and a
supermolecular (global) expansion basis, denoted as FDE(s),
in which the basis functions of all subsystems are used for
the expansion of the KS orbitals of the active subsystem.54

In FDE(m) calculations, the numerical integration grid was
centered on the active subsystem with only a few grid points
added to deal with the singularities of the Coulomb potential
at point nuclei of the frozen subsystem in close proximity
to the active subsystem.4

Unless otherwise noted, all reported FDE energies have
been converged to 10-5 au in the iterative solution of the
FDE eqs (eq 7). Both KS-DFT and FDE(s) energies were
corrected for the basis set superposition error (BSSE) with
the counterpoise technique.55

The setup and execution of all calculations and the
subsequent data extraction and analysis were automatized
with the help of PyADF,56 which is a scripting framework
for quantum chemistry realized in the Python57 programming
language. PyADF was also employed to handle the freeze-
and-thaw iterations in the FDE calculations of the Cr(III)
complexes since these can at present not be handled within
ADF for open-shell systems.

5.1. Implementation Notes. The FDE energy evaluation
according to eq 2 relies on the implementation of total KS-
DFT energies in ADF. The FDE interaction energies [see
eq 4] were obtained from a new implementation into ADF
which builds on an earlier implementation by Wesolowski
and Dulak58 for the nonadditive kinetic energy Ts

nad and the
nonadditive XC energy Exc

nad. In the current implementation,
the Ts

nad and Exc
nad contributions to the interaction energy and

the embedding potential are obtained from exact (as opposed
to fitted) densities to increase the numerical accuracy. New
is the calculation of the remaining terms, out of which the
electrostatic interaction energy between the electron densities
(Coulomb energy) of the subsystems merits some comments.
We use the shorthand notation

With Slater-type basis functions, these integrals cannot be
calculated analytically. Therefore, in ADF, the electron
densities are expanded into an auxiliary basis set of Slater
functions.27,59 The electrostatic potential of these fitted
electron densities

can be evaluated on the numerical integration grid so that
we can compute the approximate Coulomb energy by
numerical quadrature as

J̃[F(i), F(j)] has an error of O(δF(i)δF(j)).60 An integration
grid in the region of subsystems i and j is required in order
to evaluate the integrals of eq 26. In FDE(m) calculations,
however, efficiency reasons make it advantageous to center
the numerical integration grid on the active subsystem. We
therefore proceed as follows. Let us assume that we
commence the nth freeze-and-thaw cycle and we optimize
electron density F(i)(n) in the presence of all other subsystem
electron densities F(j)(n - 1) of the previous freeze-and-thaw
iteration. We now compute J[F(i)(n), F̃(j)(n - 1)] and
J[δF(i)(n), F̃(j)(n - 1)] using the grid of subsystem i and take
J[F(j)(n - 1), F̃(i)(n - 1)] and J[δF(j)(n -1), F̃(i)(n - 1)] from
the (n - 1)th iteration (computed on a grid of subsystem j)
to obtain an approximate Coulomb energy:

where

and

Upon convergence of the freeze-and-thaw cycles, eqs 28
and 29 become equivalent, and the difference

has to vanish.

6. Results and Discussion

6.1. Convergence Behavior of Energy Contributions.
In Table 1, we show typical examples of the convergence
behavior of the FDE energy (eq 2) during the iterative
solution of the FDE eqs (eq 7). The error ∆J̃ in the Coulomb
energy [see eq 30] drops quickly to 10-6 au after the third
to fourth freeze-and-thaw iteration, and at the same time,
the energy converges to 10-5 au. It takes one additional
iteration to converge FDE(s) calculations to the same
accuracy as FDE(m) calculations.

We have observed a similar convergence behavior of
FDE(m) calculations for all of the molecular complexes
investigated, independent of the applied kinetic energy
functional. Exceptions are the PBEn functionals which
caused SCF convergence problems in FDE(m) calculations
for some of the transition metal complexes.

J[F(i), F(j)] ) ∫ F(i)(r) F(j)(r′)
|r - r′| dr dr′ (24)

F̃(i)(r) ) F(i)(r) - δF(i)(r) (25)

J̃[F(i), F(j)] ) J[F(i), F̃(j)] + J[δF(j), F̃(i)] ) J[F(j), F̃(i)] +
J[δF(i), F̃(j)] (26)

J̃[F(i), F(j)](n) ) 1
2

{J̃′[F(i), F(j)](n) + J̃′′[F(i), F(j)](n)}

(27)

J̃′[F(i), F(j)](n) ) J[F(i)(n), F̃(j)(n - 1)] +
J[δF(j)(n - 1), F̃(i)(n - 1)] (28)

J̃′′[F(i), F(j)](n) ) J[F(j)(n - 1), F̃(i)(n - 1)] +
J[δF(i)(n), F̃(j)(n - 1)] (29)

∆J̃[F(i), F(j)](n) ) |J̃′[F(i), F(j)](n) - J̃′′[F(i), F(j)](n)|
(30)
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The convergence behavior of FDE(s) calculations, how-
ever, depends strongly on the type of intermolecular interac-
tions and the kinetic energy functional employed. In general,
FDE(s) calculations with LDA and GGA functionals (except
PBEn) converge smoothly, with some exceptions. Around
25 freeze-and-thaw iterations were required for a converged
FDE(s) energy of the charge-transfer complex NH3 · · ·ClF,
and with the LLP91 GGA functional no convergence could
be obtained at all. Almost none of the Cr(III) complexes
could be converged with FDE(s), irrespectively of the applied
functional. The H2O complex could be converged with the
TF, PW91k, and TW02 functionals and the CO complex with
the TF and PW91k functionals.

We encountered SCF convergence problems (either im-
mediately or after some freeze-and-thaw iterations) with
FDE(s) calculations employing kinetic energy functionals
derived from the GEA (TF9W, E00, P92, OL1, OL2, T92)
or the PBEn kinetic energy functionals for some of the
complexes of the CT7/04, DI6/04, PPS/05, BP8/05, and Zn5/
08 data sets and all complexes of the Cr10/09 data set (see
also next section). This holds in particular for the E00, PBE2,
and PBE4 functionals. Whenever good SCF convergence
was achieved, however, the FDE(s) energy converged well
within a few freeze-and-thaw iterations also for these
functionals.

In the cases in which no convergence could be achieved,
the functional derivative of the kinetic energy functional
which enters the embedding potential [see eq 8] obviously
leads to a qualitatively wrong potential. This does not
necessarily lead to a problem in FDE(m) calculations. The
availability of the full basis set for FDE(s), however, allows
the electron density to probe regions where the embedding
potential is too attractive.61 As a consequence, the electron
density may redistribute, and the initially chosen subsystem
partitioning can get lost such that the system enters the strong
overlap regime and the approximate functional in use no
longer is able to describe the situation.

Let us illustrate this with the example of an FDE(s)
calculation with the TF functional for the [Cr(OH2)5F]2+

complex, which is partitioned into [Cr(OH2)5]3+ and F-.
Table 2 shows the Mulliken charges62 associated with the
chromium and fluorine atoms in the two subsystems during

the course of freeze-and-thaw iterations. We start out with
a chromium atom which carries a charge of 1.5. The
remaining charge of 1.5 is buffered by the water ligands.
The fluoride atom has of course a charge of -1. What we
then observe is a gradual transfer of density from the
fluoride to the metal center during the course of the freeze-
and-thaw iterations. Some charge transfer, accompanied
by some back-bonding from the metal to the ligand, is to
be expected during the formation of the coordination bond.
However, in this case, too much density moves from the
ligand to the metal center. As a consequence, after a few
freeze-and-thaw iterations, a subsystem partitioning with
strongly overlapping subsystem electron densities is
reached, and results become meaningless.

6.2. Accuracy of Interaction Energies. We will discuss
the accuracy of FDE interaction energies obtained with
the different kinetic energy functionals for each data set,
which represents a particular type of interaction, sepa-
rately. In general, however, we found distinct performance
for the LDA, for the group of functionals which are
derived from the GEA (TF9W, E00, P92, OL1, OL2),
standard GGA functionals (LLP91, PW86, PW91k, TW02),
and the PBEn functionals. As could be expected from its
functional form, the accuracy of the T92 functional is
usually in between the accuracy of the GEA-derived
functionals and that of the GGA functionals.

Figures 1 and 2 summarize the accuracy of the different
kinetic energy functionals in FDE(m) and FDE(s) calcula-

Table 1. Convergence Behavior of FDE Energy Terms (in au without BSSE correction) with the Number, n, of
Freeze-and-Thaw Iterations for Two Representative Examplesa

FDE(m) FDE(s)

n J̃(n) ∆J̃(n) Eint(n) E(n) J̃(n) ∆J̃(n) Eint(n) E(n)

NH3 · · ·H2O
1 17.639472 0.006771 -0.009632 -132.904592 17.646163 0.011736 -0.009104 -132.903440
2 17.633830 0.000169 -0.012977 -132.907889 17.643158 0.000663 -0.014824 -132.908967
3 17.633686 0.000003 -0.013064 -132.907978 17.642992 0.000032 -0.015151 -132.909281
4 17.633680 0.000007 -0.013066 -132.907977 17.642982 0.000005 -0.015169 -132.909302
5 17.642982 0.000007 -0.015171 -132.909300

(HCOOH)2

1 93.989199 0.003520 -0.039358 -379.324115 94.034378 0.001900 -0.048987 -379.329414
2 93.985858 0.000203 -0.042262 -379.325771 94.034852 0.000137 -0.052773 -379.330506
3 93.985663 0.000015 -0.042440 -379.325864 94.035125 0.000029 -0.053048 -379.330448
4 93.985649 0.000001 -0.042452 -379.325870 94.035163 0.000004 -0.053075 -379.330436
5 93.985648 0.000000 -0.042453 -379.325869 94.035169 0.000002 -0.053078 -379.330429
6 94.035169 0.000000 -0.053078 -379.330430

a The PW91k functional was used for the nonadditive kinetic energy.

Table 2. Mulliken Charges Associated with the Fluorine
and Chromium Atoms in the Two Subsystems of
[Cr(OH2)5F]2+ during the Course of Freeze-and-Thaw
Iterationsa

[Cr(OH2)5]3+ subsystem F- subsystem

freeze-and-thaw cycle Cr F Cr F

0 1.5 -1.0
1 1.8 0.0 -0.2 -0.8
2 2.0 0.0 -0.3 -0.7
3 2.0 0.0 -0.5 -0.5
4 2.1 0.0 -1.2 0.3
5 2.2 0.0 -1.8 0.9

a The TF functional was used as nonadditive kinetic energy
functional.

Performance of Kinetic Energy Functionals J. Chem. Theory Comput., Vol. 5, No. 12, 2009 3167



tions, respectively, for all data sets investigated. No data are
presented for the Cr10/09 data set with FDE(s) since
essentially none of the calculations could be converged (see
also section 6.1). Tables containing all interaction energies

for supermolecular KS-DFT, FDE(m), and FDE(s) can be
found in the Supporting Information.

Figures 3 and 4 show a comparison of KS and FDE(m)
interaction energies and KS and FDE(s) interaction energies,

Figure 1. Performance of kinetic energy functionals for FDE(m) interaction energies for all investigated data sets. Mean unsigned
error (MUE), mean signed error (MSE), and maximum error (MAX) for BSSE-corrected interaction energies.
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respectively, for the three kinetic energy functionals which
perform best for a given data set.

When discussing the performance of the kinetic energy
functionals for the FDE interaction energies, one has to keep
in mind that it is not only the form of the approximate

functional for the kinetic energy which determines the quality
of the results. It is the functional derivative of the kinetic
energy functional which enters the expression for the
embedding potential [see eq 8] and as such determines
the quality of the electron density obtained. It may well be

Figure 2. Performance of kinetic energy functionals for FDE(s) interaction energies for all investigated data sets. Mean unsigned
error (MUE), mean signed error (MSE), and maximum error (MAX) of BSSE-corrected interaction energies.
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the case that error cancellations happen in the sense that a
good interaction energy is obtained, although the underlying
electron density obtained from the preceding FDE calculation
is not good at all.

From the point of view of computational efficiency,
FDE(m) is clearly superior to FDE(s), the latter even
having a higher computational cost than a corresponding
supermolecular KS-DFT calculation. However, while

Figure 3. Comparison of KS interaction energies with those of FDE(m) for the kinetic energy functionals which have the smallest
mean unsigned error (MUE) for a given data set.
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FDE(m) allows for polarization of the subsystem electron
densities, no charge transfer between the subsystems can
be described with FDE(m). We would like to stress that
only FDE(s) can exactly recover the results of a super-
molecular KS-DFT calculation (with the unknown, exact

kinetic energy functional for the nonadditive kinetic
energy Ts

nad). Thus, the proper reference for judging the
accuracy of kinetic energy functionals for the nonadditive
kinetic energy Ts

nad within the FDE formalism must be
the results from FDE(s) calculations. However, in general,

Figure 4. Comparison of KS interaction energies with those of FDE(s) for the kinetic energy functionals which have the smallest
mean unsigned error (MUE) for a given data set.
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whenever there is no net charge transfer between the
subsystems, FDE(m) is an excellent approximation to
FDE(s). This holds in particular if a sufficiently good basis
set is employed which allows for a proper polarization of
the subsystem electron densities. This certainly holds for
the large TZ2P basis set employed in our studies.

Very good results are obtained for the interaction energies
of the hydrogen-bonded dimers in the HB6/04 data set with
the standard GGA functionals and the T92 functional, both
with FDE(m) and FDE(s). The PW91k functional performs
best for FDE(m) calculations, while the LLP91 functional
takes the lead for FDE(s) calculations. Overall, however, the
difference between these functionals is not big, and there is
no clear reason to prefer one over another. The LDA
performs much worse. It consistently underestimates the
magnitude of the binding energies and cannot be recom-
mended for energetics in hydrogen-bonded systems. The
GEA-derived functionals offer no improvement over
the LDA and consistently overshoot the binding energy. The
PBEn functionals perform particularly badly, with the
exception of the PBE3 functional which, however, shows
an unacceptably large maximum error in the case of FDE(s).

For the CT7/04 data set, the LDA performs very badly
and does not predict any binding both for FDE(m) and for
FDE(s). The GEA-derived functionals apart from E00
perform rather well for FDE(m); however, this must be due
to an error cancellation because FDE(m) calculations are not
able to model a real charge transfer. For FDE(s) calculations,
in which such charge transfer is possible, similar performance
is found, except for the TF9W functional for which the SCF
could not be converged for some dimers. This is due to a
too strong charge transfer due to errors in the embedding
potential as discussed above. Acceptable results are also
obtained with the standard GGA functionals for FDE(s),
PW91k taking the lead. The PBEn functionals perform very
badly, again.

For the DI6/04 data set, very good results are obtained
again with the standard GGA functionals, in particular,
PW91k, but T92 is as good. Also, the PBE3 functional is
able to deliver good results. Given the relatively small
interaction energies, the LDA and GEA-derived functionals
do not perform well, the errors being as large as the bonding
energies. All functionals perform worse with FDE(s),
indicating that some errors in the embedding potential are
not probed by the smaller FDE(m) basis.

The intermolecular interactions in the WI7/05 data set are
very weak, and most of the functionals perform similarly,
both for FDE(m) and for FDE(s) calculations. Again, the
standard GGA functionals and T92 give the best agreement
with supermolecular KS-DFT calculations. Results obtained
with the GEA-derived functionals and the PBEn functionals
in general have an error which is larger than the interaction
energies themselves.

The interaction energies of the PPS5/05 data set are also
rather weak, and it should be mentioned that KS-DFT does
not predict any binding of the benzene dimers. The picture
is similar to that for the other data sets, the standard GGA
functionals performing best. Out of these, PW86 and TW02
are clearly superior, and PW91k has the largest errors. Also,

the LDA and the PBE3 functional give interaction energies
relatively close to the KS-DFT results. The GEA-derived
functionals and PBE2 and PBE4, however, yield useless
results or, in the case of FDE(s), do not even converge.

For the BP8/05 data set, a similar picture as before arises.
The GGA functionals and T92 perform rather well. Among
these, PW91k shows the largest errors in the interaction
energies. PW86 and TW02 are the most reliable functionals
for these types of interactions. The LDA and the PBE3
functional still yield somewhat reasonable results. All other
functionals either do not converge or show errors which are
too large to make them useful for any practical interaction
energy calculations.

At first sight, rather poor results are obtained for the Zn5/
08 data set with very large maximum and mean errors. Given
the strong interactions between the subsystems, however, the
relative errors are much smaller than one might have
expected. Due to the charge on the Zn2+ ion and the dipole
moment or charge on the ligands, the interaction energy is
dominated by the electrostatic contribution [nuclear-nuclear
repulsion and first two terms of eq 4]. It is important to point
out that the nonadditive kinetic energy contribution to the
interaction energy is on the same order of magnitude as the
electrostatic contribution. For instance, in an FDE(m)
calculation on [Zn(OH)]+ with the E00 functional, the
electrostatic contribution to the interaction energy of eq 4
between Zn2+ and OH- is -623.73 kcal/mol, while the
contribution due to the nonadditive kinetic and XC energy
is +145.50 and -44.67 kcal/mol, respectively. This empha-
sizes the importance of a proper treatment of the nonadditive
kinetic energy. Except for PBE2, all functionals underesti-
mate the binding energies. For FDE(m), E00 performs best,
and PBE3 is able to deliver better results than any other GGA
functional. For FDE(s), however, one hits the problem
described in section 6.1, and the SCF does not converge for
any of the systems both with E00 and PBE3 as well as PBE4.
It is particularly disappointing that GGA functionals do not
bring a significant improvement over the LDA. As to be
expected, for the cases in which the SCF converges, the
FDE(s) results are in better agreement with the supermo-
lecular KS-DFT calculations. Here, all GEA-derived func-
tionals apart from E00 prove to be superior to other
functionals. Unlike the other functionals, PBE2 overshoots
the interaction energy for FDE(s) and exhibits particularly
large errors. Nevertheless, it is encouraging to see (Figures
3 and 4) that the relative strength of the interaction energies
is correctly reproduced by the best FDE calculations and, as
mentioned above, the relative errors are rather small.

As already discussed in section 6.1, almost none of the
complexes from the Cr10/09 data set could be converged
with FDE(s). In the cases in which convergence was
achieved, however, FDE(s) leads to an improvement over
FDE(m) (see Supporting Information) with the exception of
the CO complex for which the FDE(m) interaction energy
with the PW91k functional is in better agreement with the
supermolecular KS-DFT result. The FDE(m) results for
the Cr10/09 data set are surprisingly good for most of the
functionals, with the exception of the PBEn series, which,
again, performs rather poorly. In particular with PBE4, SCF
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convergence could be achieved only for the fluoride complex.
All functionals apart from E00 and PBEn underestimate the
binding energies. The best results are obtained with the GEA-
derived functionals, out of which E00 is the worst. But also
the GGA functionals apart from PBEn still yield satisfactory
interaction energies. At this point, it is important to note that,
as for the Zn2+ coordination compounds, the electrostatic
and nonadditive kinetic energy contributions to the FDE
interaction energy are on the same order of magnitude and
one order of magnitude larger than the nonadditive XC
energy contribution. Thus, also here, the good correlation
between KS and FDE interaction energies (Figure 3) is not
only due to electrostatic interactions between the charged
[Cr(H2O)5]3+ complex and ligand fragments. The nonadditive
kinetic-energy functional plays a very important role.

7. Conclusions

We have implemented the calculation of interaction energies
in the framework of FDE into the ADF program package.
Using this implementation, we have performed a systematic
analysis of the performance of a large set of LDA, GEA-
derived, and GGA kinetic energy density functionals for the
nonadditive kinetic energy contribution to FDE interaction
energies. We have studied a representative data set with
interaction energies ranging from -1 kcal/mol in weakly
interacting dimers to -783 kcal/mol in coordination bonds
of transition metal complexes.

We have shown that the freeze-and-thaw cycle for a self-
consistent update of the subsystem electron densities and the
accompanying FDE energy converges within a few iterations
whenever the SCF of an FDE calculation converges smoothly.
This is in general the case both for FDE(m) and for FDE(s)
calculations with LDA and GGA kinetic-energy functionals,
except for the PBEn functionals. FDE(m) calculations with
the GEA-derived and PBEn-GGA functionals also converge
properly. In FDE(s) calculations, however, convergence
problems are encountered frequently with these functionals
and, in the case of the Cr(III) complexes, for all functionals
we have tested. Particularly bad in this respect are the E00,
PBE2, and PBE4 functionals. Qualitatively wrong embedding
potentials are obtained in these cases, which lead to strongly
overlapping subsystem electron density partitionings which
lie outside the domain of applicability of these approximate
functionals.

Reasonable interaction energies can already be obtained
with the LDA. However, GGA kinetic-energy functionals
(apart from PBEn) in general significantly improve upon the
LDA. Exceptions are the very weak interactions of the WI7/
05 data set and the coordination bonds in the Zn5/08 data
set for which the errors with the LDA and GGA functionals
are practically of equal magnitude. In most cases, the LLP91,
TW02, and PW91k functionals work best, but there is no
strong indication to prefer one GGA over another if interac-
tion energies are the target of interest. Also, the PBE3
functional yields very good interaction energies in many
cases, but it is not reliable, in particular for FDE(s)
calculations for which no SCF convergence can be achieved
in some cases.

It is particularly encouraging that reasonable results can
be obtained for the bond energies in coordination compounds.
In contrast to the weak intermolecular interactions, for these
systems, the GEA-derived functionals perform better than
the GGA functionals. This indicates that FDE using these
functionals may be useful for studies of ligand exchange
reactions or catalytic reactions in which transition metal
centers are involved.

We expect our results to be transferable to FDE calcula-
tions carried out in conjunction with XC functionals other
than PBE which we have employed throughout this work.
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Abstract: The use of molecular similarity to develop reliable low-cost quantum mechanical
models for use in quantum mechanical/molecular mechanical simulations of chemical reactions
is explored, using the H + HF f H2 + F collinear reaction as a test case. The approach first
generates detailed quantum chemical data for the reaction center in geometries and electrostatic
environments that span those expected to arise during the molecular dynamics simulations.
For each geometry and environment, both high- and low-level ab initio calculations are performed.
A model is then developed to predict the high-level results using only inputs generated from the
low-level theory. The inputs used here are based on principal component analysis of the low-
level distributed multipoles, and the model is a simple linear regression. The distributed multipoles
are monopoles, dipoles, and quadrupoles at each atomic center, and they summarize the
electronic distribution in a manner that is comparable across basis set. The error in the model
is dominated by extrapolation from small to large basis sets, with extrapolation from uncorrelated
to correlated methods contributing much less error. A single regression can be used to make
predictions for a range of reaction-center geometries and environments. For the trial collinear
reaction, separate regressions were developed for the transition region and the entrance and
exit channels. These models can predict the results of CCSD(T)/cc-pVTZ computations from
HF/3-21G distributed multipoles, with an average error for the reaction energy profile of 0.69
kcal/mol.

1. Introduction

Quantum chemistry has made great strides in developing
highly accurate methods for computing the properties of
small molecules, but application to large molecules remains
challenging due to the rapid increase in computational cost
with system size. One means of reducing cost is to restrict
the full quantum description to a small locus, the reaction
center, of a larger system. This approach is used in quantum
mechanics/molecular mechanics (QM/MM) methods, where
QM is used to describe a handful of atoms in the reaction
center, while MM is used for the thousands of atoms in the
remainder of the system (e.g., protein and solvent).1-4 In
such simulations, the QM algorithm is typically called
millions of times to generate the energy, forces, and charge
distribution of the reaction center in the presence of

electrostatic interactions with the MM environment.4 Despite
the use of QM methods only in the reaction center, the QM
computations are often the bottleneck in such simulations.
It is this high cost of QM that this work seeks to substantially
reduce, thus further expanding the reach of QM/MM models
to the large and complex systems of relevance in biological
and materials applications.4-9 The computational savings of
QM/MM stem from the local nature of chemistry, such that
QM can be used on only a small locus of the system. Here,
we explore the use of molecular similarity to further reduce
the computational cost. We begin by performing high-level
quantum computations on the reaction center in a range of
environments that span those expected to arise in the QM/
MM simulation. This data is then mined for a low cost model
that can describe the reaction center in similar environments.

The QM portion of a QM/MM simulation is defined by
the boundary with the MM region and by the level of electron* Corresponding author. E-mail: yaron@cmu.edu.
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structure theory used in the reaction center. A wide variety
of quantum chemical methods (e.g., semiempirical and ab
initio calculations) are now available with differing reliabili-
ties and with CPU times ranging from seconds to days.10,11

The level of computation needed to achieve a certain target
accuracy varies widely, both with system type and with
position along the reaction coordinate. A challenging aspect
of chemical reactions is the need to obtain an accurate
description of the energy and the configuration of the
transition-state (TS), since the multireference character of
the TS region often requires QM methods with the highest
computational cost.12 The formal scaling of computational
effort for ab initio calculations on a N-electron system ranges
from O (N3) for Hartree-Fock theory to O (N5) for MP2
and O (eN) for the exact full-configuration interaction (full-
CI) solution, making the most accurate and reliable methods
difficult to apply in QM/MM simulations where the QM
calculations must be called at each time step of a molecular
dynamics (MD) trajectory.13

Many approaches have been developed to reduce the
computational expense of ab initio calculations.14-24 Gener-
ally, these attempts take advantage of two common features
of molecular systems: nearsightedness and molecular similarity.

Nearsightedness relates to the local character of the
interactions present in a molecule, such that interactions
occurring on long length scales can be simplified to interac-
tions between electrostatic multipoles and van der Waals
forces.25 Linear-scaling methods aim to take advantage of
this local character wherever possible in a quantum chemical
calculation.26 For instance, divide-and-conquer methods
reduce the computational cost of self-consistent field
calculations14,27 or correlated calculations,28 while fast
multipole methods accelerate the computation of Coulomb
interactions.16,29

Molecular similarity relates to the tendency of molecular
fragments, such as functional groups, to behave similarly in

different molecules and environments. The assumption of
molecular similarity underlies the use of atom- or functional-
group-specific parameters in semiempirical quantum chem-
istry and molecular mechanics.21,22,30 For instance, in
semiempirical methods, the ab initio Hamiltonian is replaced
with a simpler model Hamiltonian, which is parametrized
either to experimental21 or ab initio data.31-34 Similarly, force
fields in MM are parametrized using both experimental and
theoretical data regarding the structure and the interactions
between functional groups. Both methodologies lead to
substantially lower computational costs than ab initio cal-
culations, however, with a loss in accuracy that may limit
their applicability.4,35,36

Here, we explore the use of molecular similarity to develop
models for use in QM/MM calculations of chemical reactions
that have substantially lower cost than ab initio calculations
and that have controllable accuracy and reliability. Our
approach first generates detailed quantum chemical data of
the reaction center in configurations and electrostatic envi-
ronments that span those expected to arise during the MD
trajectory. For each configuration and environment, both
high- and low-level ab initio calculations are performed.
These data are then analyzed to develop a low-cost model
that can, given only the output of a low-level ab initio
calculation, predict the output of the high-level calculation.
Development of the model also yields information on the
reliability of the mapping from low- to high-level results,
including both the expected error of the prediction and the
range of configurations and environments over which the
assumption of molecular similarity can be expected to hold.
Such a model can then be used to perform QM/MM
calculations at the cost of the low-level quantum theory,
while generating results that approach the accuracy of the
high-level theory.

Figure 1 shows a schematic representation of the approach
applied to the collinear reaction of H + HF f H2 + F, the

Figure 1. Scheme for the development and the use of a model of the chemical reaction H + HF f H2 + F. The middle boxes
represent various levels of quantum chemical calculations with accuracies and costs that increase from left to right. The bottom
box represents a model that maps from the energy (E) and the charge distribution (F) of a low-level model to that of the high-
level model. The model may use different regressions, selected according to region along the reaction coordinate or other
criteria.
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trial reaction considered in this work. This reaction is
sufficiently small that high-level computations can be done
quickly, but sufficiently complex that it provides a realistic
test of the approach. The transition-state has a substantial
multireference character, and its position and energy are
sensitive both to the level of ab initio calculation37-40 and
to the environment. Pathway 1 of Figure 1 shows the ideal,
but computationally unfeasible, approach of using a high-
level quantum chemical method to generate the information
(energy of the system, E, and charge distribution of the
reaction center, F) needed at each time step in an MD
simulation. This work explores an alternative approach,
pathway 2 of Figure 1, which generates this information from
a model that takes as input information obtained from a low-
level quantum chemical method. This model is trained on
data generated for a set of molecular configurations that vary
both the geometry of the reaction center and the electrostatic
environment. Figure 1 shows that levels of computation
between that of the low- and high-level theories may be
useful either as inputs for pathway 2 or as additional
information for the model development.

Section 2 describes the development of the model that
maps low- to high-level quantum chemical results. The data
used to extract the model is discussed in Section 2.1. One
important aspect of the model development is determining
a set of descriptors that can serve as useful inputs to a
regression that maps low- to high-level results. The descrip-
tors used here are based on a principal component analysis
of Stone’s distributed multipoles,41 as discussed in Section
2.2. The general form of the regression model is introduced
in Section 2.3 with the details of the model development
being discussed in Section 3.1. Sections 3.2 and 3.3 present
the results, and Section 4 gives a brief summary and future
directions.

2. Methods

2.1. Data Generation. To test our model, we chose to
study the collinear H + HFf H2 + F reaction. This collinear
reaction has only two degrees of freedom and is sufficiently
small that calculations may be carried out quickly. Neverthe-
less, the reaction involves breaking a H-F bond and forming
a H-H bond, which is sufficiently complex that accurate
prediction of the reaction surface requires both large basis
sets and high levels of electron correlation.37-40 The
sensitivity to basis set and correlation have been attributed
to the multireference character of the wave function in the
vicinity of the transition-state. The best agreement with
experiment is obtained using either multireference-configu-
ration interaction (MRCI) calculations with the Davidson
correction38 or coupled-cluster calculations.37 The coupled-
cluster calculations estimate the barrier height of the linear
and the bent transition-states as 2.16 and 1.63 kcal/mol,
respectively, with an uncertainty of 0.1 kcal/mol. In addition
to this sensitivity to the quantum chemical approach, the
results below show that the reaction surface is sensitive to
the environment, and so this system provides a reasonable
test of the ability of the approach to describe reactions in
complex environments.

Figure 2 shows the substantially different reaction surfaces
obtained from a low-level (HF/3-21G) versus a high-level
(CCSD (T)/cc-pVTZ) computation. Our goal is to predict
the high-level surface from outputs generated by the low-
level method. We note that DFT methods may provide low-
level models with higher accuracy and, for semilocal DFT,
lower computational costs. HF theory is used here as the
low-level model to allow a clear test of the ability of the
map to include the correlation energy. Table 1 illustrates
the computational savings possible from such an approach.
This table lists relative CPU times as a function of both the
size of the basis set and the level of electron correlation,
along with the asymptotic scalings of the correlated methods.
The times are listed for a somewhat larger system, C5H12,
than that studied here to better illustrate the potential
computational savings from use of this approach.

Data spanning the regions of interest were generated using
an automated system that varies both the geometry of the
reaction center and the electrostatic environment. The 46
geometries shown as symbols in Figure 3 were chosen to
span the relevant region of the potential energy surface (PES)
of the collinear reaction. The different symbols in Figure 3
indicate grouping of the geometries into three regions:
entrance channel, transition-state, and exit channel. This
classification of the PES into three regions is used to test

Figure 2. HF/3-21G (top left) versus CCSD (T)/CCVPTZ (top
right) surfaces of the gas-phase collinear H + HF f H2 + F
trial reaction. The contours are from 0 to 33 kcal/mol in steps
of 3 kcal/mol. The dotted lines show reaction paths (top
panels) and reaction energy profiles (lower panels).

Table 1. Relative CPU Times for Some Typical QM
Methods on C5H12

10,a

3-21G
(N ) 69)

6-31G*
(N ) 99)

6-31+G*
(N ) 119)

6-311++G**
(N ) 194)

HF [N2.7] 1 3.8 5 23.1
B3YLP [N∼3] 2.5 5 7 31
MP2 [O N4] 1.4 7.6 10.2 60.8
MP4 [O3V4] 29.9 131.5 296.7 4066.2
QCSID(T) [O3V4] 63.3 220.9 558.3 8900.3

a Columns correspond to basis sets and rows to levels of
electron correlation. Asymptotic scalings are in brackets (N ) total
number of basis functions, O ) number of occupied orbitals, V )
number of unoccupied orbitals).
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the ability of a single model to make predictions over a fairly
broad region of the configuration space (Section 3.3). For
the point shown as a filled square in Figure 3, data were
generated using the 15 levels of theory obtained from
combining 3 correlation methods (HF, MP2, and QCISD)
with 5 basis sets (STO-3G, 3-21G, 6-31G*, 6-31++G**,
and cc-pVTZ). These data are used to explore various aspects
of mapping low- to high-level theories. For the remainder
of the geometries, data were generated using one low-level
(HF/3-21G) and one high-level method (CCSD(T)/cc-pVTZ).
The data consists of single-point energy calculations carried
out using a tight convergence threshold of 1.5 × 10-5

Hartree/Bohr with the GAUSSIAN03 software package.42

The reaction surfaces are obtained from the 46 points of
Figure 3 by triangle-based cubic interpolation. The reaction
path and the energy profiles are then obtained from these
interpolated surfaces.

For each of the reaction-center geometries of Figure 3,
we generate a set of plausible electrostatic environments. In
QM/MM calculations, the reaction center experiences the
environment only through electrostatic interactions,13 and so
each environment consists of a set of external charges. For
a biological reaction, MD trajectories would be run, and
snapshots along this trajectory would be selected to yield a
set of environments that span those likely to arise in the free
energy computations. For our study, we generated a set of
250 random electrostatic environments by placing either a
randomly oriented dipole (probability, p ) 0.8), a single
charge (p ) 0.1), or void (p ) 0.1) at each of the 8 corners

of a 12 Bohr cube surrounding the reaction center, as shown
in Figure 4. The magnitude for the single charges is selected
randomly from a uniform distribution ranging from -19.2
× 10-19 to +19.2 × 10-19 Coulomb and for the dipoles from
0 to 4.72 D. These environments were chosen to induce
substantial perturbations in the reaction surface. The barrier
heights range from 0 to 24 kcal/mol with an average and
standard deviation of 1.71 ( 2.92 kcal/mol at CCSD(T)/cc-
pVTZ level (see Figure 5). The combination of 250 environ-
ments and 46 reaction-center geometries yields a data set
with 11 500 entries, where each entry contains the results
of both the low-level (HF/3-21G) and high-level (CCSD(T)/
cc-pVTZ) computations. Of the 11 500 combinations, 12

Figure 3. Contour plot of PES of H + HF f H2 + F reaction
in a typical environment. Symbols are geometries where
calculations were performed for the transition region (tri) and
for the entrance (circ) and exit (square) channel regions. The
filled square is the geometry38 used in the analyses of Tables
2 and 3.

Table 2. Mean Absolute Errors in kcal/mol for Predicting
Correlated (QCISD) Self-Energiesa

HF MP2 QCISD

STO-3G 0.12 0.05 0.00
3-21G 0.05 0.05 0.00
6-31G* 0.01 0.00 0.00
6-31++G** 0.02 0.01 0.00
cc-pVTZ 0.03 0.01 0.00

a From the output of lower-level computations via eq 2 with
Npca ) 10, for the geometry shown as a filled square in Figure 3.

Table 3. Mean Absolute Error in kcal/mol for Predicting
Large Basis (cc-pVTZ) Self-Energiesa

STO-3G 3-21G 6-31G* 6-31++G** cc-pVTZ

HF 0.52 0.18 0.21 0.10 0.00
MP2 0.54 0.36 0.23 0.11 0.00
QCISD 0.57 0.53 0.24 0.12 0.00

a From the output of computations performed at the same level
of correlation but with smaller basis sets. The model is that of eq 2
with Npca ) 10. The reaction-center geometry is that of the filled
square in Figure 3. For instance, a model mapping descriptors
generated at the HF/6-31G* level to energies of a HF/cc-pVTZ has
a RMS error of 0.21 kcal/mol.

Figure 4. Schematic of electrostatic environments used for
the H + HFf H2 + F collinear reaction. RFH and RHH are the
bonddistancesbetweentheF-HandH-Hatoms, respectively.

Figure 5. Reaction energy profiles from CCSD(T)/CCVPTZ
calculations for the 250 electrostatic environments included
in this study.
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failed to converge at the high-level theory within the time
feasible given the computational resources, and so were not
included in the data set.

Our goal is to create a model that can map from low- to
high-level methods by predicting the output of the high-level
method, using only inputs generated by the low-level method.
Since mapping from low- to high-level methods requires
mapping across basis sets, the approach used to generate
descriptors must yield results that are comparable across basis
sets. For this reason, we use Stone’s distributed multipoles.41

The distributed multipoles are multipoles (monopole, dipole,
quadrupole, etc.) centered on each atom and, optionally, on
any chosen additional site, such as bond centers. The
distributed multipoles reproduce the electrostatic potential
surrounding the molecule to chemical accuracy, and so
provide an essentially complete representation of the elec-
tronic distribution of the molecule.43 The advantage of this
description is that the same number and type of distributed
multipoles can be generated for any basis set, as opposed to
an object such as the one-electron density matrix, whose size
and meaning changes with basis set and cannot be easily
compared across basis sets.44 An additional benefit is that
distributed multipoles integrate well in QM/MM since the
distributed multipoles are sufficient to compute the electro-
static interaction between the reaction center and the
environment.45,46

Distributed multipoles are calculated using the distributed
multipole Analysis of Gaussian98 wave functions (GDMA)
software package.47 Distributed multipoles up to the sixth
order are generated first at just the atom centers, for a total
of 108 distributed multipoles, and then at both atom and bond
centers, for a total of 180 distributed multipoles.

The mapping from low- to high-level theories is meant to
predict the properties of the reaction center in configurations
and environments that are similar to those in the original
data set. The quantity to be predicted by the model is,
therefore, the self-energy of the reaction, which is extracted
from the total energy, ETOT, produced by the ab initio
calculation as follows:

where E is the self-energy of the reaction center, ECHARGES

is the self-energy of the environment (i.e., the interaction
energy between the fixed charges within the environment),
and EINT is the interaction energy between the reaction center
and the fixed charges of the environment. ETOT and ECHARGES

are generated with GAUSSIAN03 by default. EINT is obtained
using the ORIENT48 software package to predict the energy
of interaction between the distributed multipoles of the
reaction center and the fixed charges of the environment.

2.2. Feature Extraction. Feature extraction methods are
useful to discover a minimal set of variables that may be
used to describe the electronic structure of the reaction center.
In ab initio calculations, a large set of variables is needed to
obtain a form for the electronic wave function that is
sufficiently flexible that accurate solutions of the Schro-
edinger equation may be obtained. For mapping low- to high-
level quantum chemical results, the variables need only
capture the variation in the electronic structure across

situations that lie within the target range of validity for the
model. The number of variables needed to describe differ-
ences among similar molecular structures is likely to be much
smaller than the number of variables needed to obtain
accurate solutions of the ab initio Hamiltonian.49,50 Here,
feature extraction is used to discover a reduced set of
variables that describe variations in the electronic structure
across the data set of Section 2.1.

The feature extraction method used here is principal
component analysis (PCA), which is a simple and widely
used approach.51 PCA produces an orthogonal linear trans-
formation of the feature space in such a way that the first
linear combination of the original features, the first principal
component, explains the greatest variance in data, and the
second principal component is orthogonal to the first one
and explains the greatest remaining variance and so on. Thus,
each principal component identifies and ranks the most
important features needed to capture the variability in the
data. Principal components extracted in this manner define
a new feature space that contains the same information as
the original feature space but along dimensions that are
ranked according to importance. Typically, only a few
principal components are sufficient to capture the variability
in data.

Here, PCA is applied to the distributed multipoles obtained
from the high-level method. This yields principal components
that are linear combinations of distributed multipoles. Since
the units of the distributed multipoles vary with order (dipole,
quadrupole, etc), some scaling approach is needed to make
the various orders of the distributed multipoles comparable.
A common approach in PCA analysis is the standardization
of data by dividing each distributed multipole by the standard
deviation of that particular distributed multipole in the input
data. This gives each distributed multipole unit variance and
so gives equal weight to all distributed multipoles, even those
whose variance in the input data is quite small. Here, we
instead weight the distributed multipoles according to their
interaction with the fixed charges of the environment. This
is done by first computing the average interaction energy
between the DM with unit magnitude (e.g., the x component
of the dipole on the F atom) and the fixed charges of the
environment. The distributed multipoles are then divided by
this average interaction energy. Figure 6 shows the result of
PCA on the distributed multipoles generated at atomic centers
from 11 488 calculations (the 46 reaction-center geometries
of Figure 3 in the 250 environments of Figure 4). Figure 6
indicates that the number of degrees of freedom needed to
capture the variation in the electronic structure of the reaction
center is about five for both low- and high-level QM
computations. The distributed multipoles from the low-level
computations are then projected onto the high-level PCA
vectors to give scores, Si

LL, where i labels the principal
components in order of importance.

2.3. Model Fitting. Above, we considered the choice of
descriptors to be used as input to a model that maps from
low- to high-level QM algorithms. The form of the model
used here is a simple linear regression:

E ) ETOT - ECHARGES - EINT (1)
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where p is the model parameter, E is the self-energy of the
reaction center (the energy with electrostatic interactions
between the reaction center and the environment removed
via eq 1), and Si

LL is the projection of the low-level distributed
multipoles onto the ith principle component. Npca

lin and Npca
quad

are the number of principal component descriptors included
in the model for the linear and quadratic terms, respectively.
When Npca

lin and Npca
quad are equal, they are quoted below as

simply Npca.
All results presented below use five-fold cross validation,

such that the model is trained on a randomly selected subset
of 80% of the data and tested on the remaining 20%. The
data is divided randomly into five equally sized subsets, and
predictions for each subset are obtained from a model trained
to the other four subsets.

3. Results

3.1. Form of the Canonical Model. The model involves
choices regarding the number and type of distributed

multipoles, the form of the regression in eq 2 (linear versus
quadratic terms and inclusion of self-energy from the low-
level model), and the number of PCA descriptors included
in the regression. The canonical model used in the bulk of
this paper includes distributed multipoles up to quadrupoles
on each atom center, and includes the low-level energy in
the regression along with both linear and quadratic terms
for the 10 most important PCA vectors (Npca ) 10 in eq 2).
We next examine the sensitivity of the model predictions to
these choices.

We will initially examine some general aspects of the
model fitting, holding the reaction center at the geometry
shown as a filled triangle in Figure 3. This point is in the
transition-state region of the isolated reaction center, where
QM computations are expected to be most challenging.

The sensitivity of the model to the choice of distributed
multipoles is shown in Figure 7. The average errors are to
be compared to the standard deviation of 1.7 kcal/mol for
the self-energy of the QCISD/cc-pVTZ calculations. Figure
7 shows the mean absolute error as a function of the number
of principal components included in the regression, Npca of
eq 2, for various levels of multipoles and with (right) and
without (left) inclusion of distributed multipoles at bond
centers. The results in Figure 7 show that inclusion of
distributed multipoles at bond centers does little to improve
the performance of the model, and so the canonical model
includes distributed multipoles only at atomic centers. Figure
7 also shows that the model performance increases signifi-
cantly with addition of high-order distributed multipoles up
to quadrupoles, but inclusion of higher ranks do not
significantly decrease the error. Therefore, the canonical
model includes only distributed multipoles up to quadrupoles
on atomic centers, yielding a set of 27 raw descriptors. Figure
7 also shows that the error in the fit drops rapidly for the
first seven principal components and then levels off. (This
is a slower convergence than that seen in Figure 6, suggesting
that an alternative approach to selecting input variables for
the model could be beneficial.) Figure 7 suggests that Npca

should be greater than 7, but our final choice of Npca for the
canonical model will be based on fits to all reaction-center
geometries discussed below.

Figure 6. Percent variance of the electronic structure of the
reaction center (i.e., the distributed multipoles) explained as
a function of the number of principal components retained in
the description.

Figure 7. Mean absolute errors in kcal/mol from models predicting the QCISD/cc-pVTZ self-energy from output of HF/3-21G
computations at the reaction center geometry, shown as a filled square in Figure 3. The lines show the average error versus the
number of principal components included in both the linear quadratic terms of eq 2, when distributed multipoles up to the indicated
level are included in the analysis. Distributed multipoles are included only on atoms (left) or on both atoms and bond centers
(right).

EHL ) pconst + penerELL + ∑
i)1

Npca
lin

pi
linSi

LL + ∑
i)1

Npca
quad

pi
quad(Si

LL)2

(2)
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Next, we examine the model performance when multiple
reaction-center geometries are included in a single regression.
Figure 8 shows results for the global fit as a function of Npca

for the linear and quadratic terms of eq 2. Results are also
shown both with and without inclusion of the self-energy
from the low-level theory, ELL, in the model of eq 2.
Inclusion of ELL substantially improves the quality of the
fit, since this allows the model to focus on corrections to
the energy arising from use of larger basis sets and from
inclusion of electron correlation, as opposed to fitting the
energy itself. The error drops smoothly with the addition of
parameters to the fit and the addition of linear and quadratic
terms leads to roughly equivalent improvements. The canoni-
cal model used in the remainder of this paper includes up to
the first 10 principal components in both the linear and
quadratic terms, at which point the errors are 0.6 kcal/mol
for the point-by-point fit and 1.1 kcal/mol for the regional
fit (see Supporting Information). Addition of cubic terms was
also explored but found not to significantly outperform the
model of eq 2 (data not shown).

3.2. Extrapolation Across Basis Sets and Electron
Correlation Methods. This section examines the ability of
the canonical model to extrapolate along the two dimensions
that establish the level of the quantum chemical computation:
correlation method and basis set. The analysis is done at the
geometry, shown as a filled square in Figure 3.

Table 2 shows the ability to extrapolate across electron-
correlation methods for a variety of basis sets. The results
suggest that accurate maps can be developed from low to
high levels of correlation. This success is consistent with
the assumption of density functional theory (DFT), that the
correlation energy is a functional of the one-electron density.
The distributed multipoles used as inputs to the model capture
the electronic distribution and so contain much of the
information present in the one-electron density. In previous
work, Janesko et al. used feature extraction algorithms to
develop models for correlation energy based explicitly on
density matrices.28 That work developed a model to predict
the two-electron density matrix, F(2)

i,j,k,l from the one electron

density matrix, F(1)
i,j, thereby predicting the correlation energy

from the one-electron density, as in DFT methods. However,
the use of density matrices has the disadvantage of making
it difficult to develop models that connect across basis sets,
and it is for this reason that we have developed the DM
approach described here.

Table 3 shows the ability to extrapolate across basis sets,
for a variety of levels of correlation. Comparison with Table
2 reveals that most of the error in the model predictions arises
from mapping across basis sets. For the HF calculations,
substantial improvement is attained by using 3-21G as the
low-level theory as opposed to that of STO-3G. This result
is consistent with Janesko’s work on functional group basis
sets derived from PCA of natural orbitals, which found that
the intrinsic dimensionality of a functional group is larger
than the number of degrees of freedom in a minimal (STO-
3G) basis and is roughly equivalent to that of a 3-21G basis
set.50 Note, however, that the accuracy of the basis set
extrapolation depends on correlation method, with higher
levels of correlation requiring larger basis sets as the low-
level input to the model.

3.3. Mapping from Low- To High-Level Potential
Energy Surfaces. This section examines the degree to which
a single regression can be used to make predictions for
different reaction center geometries. Figure 9 shows that
using a single global regression for all the reaction-center
geometries (points labeled with symbols in Figure 3) yields
an error that is substantially larger than that obtained from
a point-by-point fit in which a separate regression is
performed at each reaction-center geometry. This is expected,
since the number of fitting parameters is substantially larger
for a point-by-point fit. Also, the success of the regression
is related to molecular similarity, and the reaction center
changes its character as the reaction progresses. Regression
of the three regions (transition-state and entrance and exit
channel geometries of Figure 3) yields better results than a
global fit, while still using a single regression to make
predictions for a range of geometries. Figures 10 and 11 show

Figure 8. Surface plot of mean absolute error as a function
of the number of linear and quadratic terms included in eq 2
for a map from HF/3-21G to CCSD (T)/cc-pVTZ theory, using
a single regression for all 46 geometries of Figure 3. Results
are shown with (red) and without (blue) including the HF/3-
21G self-energy in the model of eq 2.

Figure 9. Error versus number of principle components in
the linear regression of eq 2 for a model mapping HF/3-21G
to CCSD(T)/cc-pVTZ self-energies. Results are shown for
global, regional, and point-by-point fits. The total number of
fitting parameters in the model of eq 2 is 92 Npca + 1, 6 Npca

+ 1, and 2 Npca + 1, for point-by-point, regional and global
fits respectively.
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both a representative fitted reaction surface and path. The
regional fits substantially outperform global fits and yield
smooth potential energy surfaces. Fits of the remaining 249
environments are summarized in Figure 12, which shows
the error in the reaction energy profiles (the lower panels of
Figures 10 and 11) averaged over all environments. We note
that there are a few environments that induce very large
changes in the reaction profiles (see Figure 5), and removal
of these extreme environments would further reduce the
average error.

The results for the regional fits in Figure 12 indicate that
it is possible to develop a single regression that can handle
a range of reaction-center geometries. The success of such
fits relies on grouping of geometries into sets where

molecular similarity may be expected to apply. The division
into regions, shown in Figure 3, is ad hoc; however, a more
systematic approach can be envisioned in which cluster
analysis is used to group electronic structures (as opposed
to geometries) into similar regions. Such an approach will
lead to a model of the type shown in Figure 1, where a
decision tree is first used to classify the electronic structure
from the low-level theory into a region, and then a region-
specific regression is used to map from low-to high-level
results. Since the MD algorithm requires forces, smoothing
the results from different regions may be necessary, in which
case functions that smoothly switch between regressions may
be used for cases that lie near boundary regions between
clusters. However, no smoothing was used at the boundaries
in the current regional and point-by-point fits, and the
resulting reaction surfaces and energy profiles are smooth
and will lead to smoothly varying forces.

The results presented above consider only models for
the self-energy of the reaction center (eq 2). To compute
the interaction energy between the reaction center and the
environment, the charge distribution of the reaction center
is also needed. This interaction can be well computed from
the distributed multipoles of the reaction center,46,46 and so
a model that predicts the high-level distributed multipoles
from the low-level distributed multipoles would be sufficient
for this purpose. A preliminary investigation revealed that
for the entire data set r2 is 0.93 between low-level (HF/3-
21G) and high-level (QCISD/6-31++G**) distributed mul-
tipoles, as opposed to 0.34 for the correlation between low-
and high-level self-energies of the reaction center. This
suggests that the prediction of distributed multipoles is a
relatively easy task when compared to the prediction of the
self-energy, and so predictions of distributed multipoles are
not explicitly addressed in this paper.

4. Conclusion

Here, we explore the use of molecular similarity to develop
models for use in QM/MM simulations that can, at the cost

Figure 10. Self-energy obtained from low-level HF/3-21G (left
top) and high-level CCSD(T)/cc-pVTZ calculations (right top)
and from a global fit from low- to high-level self-energies (left
bottom) for the collinear H + HF f H2 + HF trial reaction in
a typical environment. The contours are from 0 to 30 kcal/
mol in steps of 3 kcal/mol. The reaction energy profiles are
compared in the lower right panel.

Figure 11. Results of a regional fit from HF/3-21G to
CCSD(T)/cc-pVTZ methods for the collinear H + HF f H2 +
HF trial reaction in a typical electrostatic environment. The
notation is as in Figure 10.

Figure 12. Mean absolute error in the reaction profile
energies for a map from HF/3-21G to CCSD(T)/cc-pVTZ
theories, averaged over all 250 environments. Results are
shown versus number of principle components included in
both the linear and quadratic terms of eq 2 for global (green
square), regional (blue star) and point-by-point (red circle) fits.
The average error between the low- and high-level calculated
reaction paths is shown as black triangles for reference.
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of a low-level ab initio calculation, produce results that
approach the accuracy of high-level ab initio calculations.
Our approach first generates detailed quantum chemical data
on the reaction center in geometric configurations and
electrostatic environments that span those expected to arise
during the MD trajectory. This data includes results obtained
from both low- and high-level ab initio methods. This
information is then used to develop a low-cost model that
can reproduce the output of the high-level theory using only
inputs generated from the low-level theory. This approach
was tested on the H + HF f H2 + F collinear reaction.
This reaction center is sufficiently small that high-level
calculations can be performed quickly. Yet despite the small
size, the reaction still involves breaking and forming of bonds
in a manner that is sensitive to the environment and provides
a realistic test of the approach.

The ability to predict high-level results using only descrip-
tors generated from low-level calculations was tested along
the two dimensions that define a quantum chemical method:
the level of electron correlation and the size of the basis
set. The models predict the results of the high-level theory
using, as input, distributed multipoles obtained from the low-
level method. The distributed multipoles are monopoles,
dipoles, and quadrupoles placed on each atomic center, and
they summarize the electronic distribution in a manner that
is independent of basis set. Including electron correlation,
by predicting QCISD results from HF inputs, leads to an
average error of less than 0.05 kcal/mol for split-valence basis
sets. This relatively low error is consistent with the assump-
tion of DFT, that the correlation energy is a functional of
the electronic density. Extrapolating across basis sets is the
primary source of error in the models, with the extrapolation
from 6-31G* to cc-pVTZ basis sets giving an error of 0.21
kcal/mol within HF theory and 0.24 kcal/mol within QCISD
theory. The models used here were parametrized to about
104 high-level computations and so will lead to substantial
savings for situations, such as MD simulations, where the
quantum algorithm is called 106 or more times.

An important criterion regarding the applicability of this
approach to more complex reaction centers is the extent to
which a single model can handle a range of reaction-center
geometries. The current study showed that reasonable
accuracy can be obtained when configurations of relevance
to the collinear trial reaction are broken into three regions:
the transition region and the entrance and exit channels. This
suggests that regressions can be developed that span fairly
large regions of configuration and environment space. The
ability of a single regression to describe a range of
configurations benefits from the use of the model only to
build basis set and correlation corrections onto the energy
generated by a low-level method. The energy from the low-
level method already contains reasonable estimates to the
interactions energies and contains how these vary with
geometry.

The use of machine learning to group input configurations
into regions, i.e., to develop the optimal decision tree for
selecting regressions in Figure 1, should yield even better
results than the ad hoc selection of regions used here. This
may become especially important for larger reaction centers.

Consider, for instance, the important class of biological
reactions that involve transfer of a hydrogen atom, a phos-
phate group or other small molecular fragment between two
groups. The dimensions corresponding to fragment transfer
will have the greatest total spread. Fluctuations in the
orientation of the groups between which the transfer occurs
must also be included but with smaller amplitudes, since such
motions are often constrained by covalent attachment to the
protein backbone.

Inclusion of additional information from the QM methods
may also lead to better performing models. In particular,
many QM methods have analytical derivative methods that
generate forces and higher energy derivatives at little
additional cost.52 These derivatives provide additional in-
formation that may aid in the development of the model
mapping low- to high-level energies. Analytical gradient
information may also allow for a direct and, thus, a more
efficient prediction of forces.

The success of the models presented here is encouraging,
especially given the simplicity of the methods, i.e., PCA and
linear regression, used to discover the models. The use of
PCA for feature extraction can be extended both to nonlinear
feature extraction methods and to methods that select latent
variables based on the importance to the model, as opposed
to the variability in the input data. Likewise, the linear
regression used here is among the simplest possible means
to map between low- and high-level theories, and a wide
array of alternative methods from statistics and machine
learning can be envisioned.53
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Abstract: Oxidation of the benzyl radical plays a key role in the autoignition, combustion, and
atmospheric degradation of toluene and other alkylated aromatic hydrocarbons. Under relevant
autoignition conditions of moderate temperature and high pressure, and in the atmosphere,
benzyl reacts with O2 to form the benzylperoxy radical, and the further oxidation reactions of
this radical are not yet fully characterized. In this contribution, we further develop the reaction
chemistry, thermodynamics, and kinetics of benzyl radical oxidation, highlighting the important
role of benzyl hydroperoxide and the benzoxyl (benzyloxyl) radical. The benzylperoxy + H
reaction mechanism is studied using computational chemistry and statistical reaction rate theory.
High-pressure limit rate constants in the barrierless benzylperoxy + H association are obtained
from variational transition state theory calculations, with internal rotor contributions. The
benzylperoxy + H reaction is seen to produce an activated benzyl hydroperoxide adduct that
has 87 kcal mol-1 excess energy over the ground state. We show that this activated adduct
proceeds almost exclusively to the benzoxyl radical + OH across a wide range of temperature
and pressure conditions. Minor reaction paths include benzyl + HO2, R-hydroxylbenzyl + OH,
and benzaldehyde + H2O, each constituting around 1% of the total reaction rate at higher
temperatures. Thermal decomposition of benzyl hydroperoxide, formed by hydrogen abstraction
reactions in the benzylperoxy radical and at low temperatures in the benzylperoxy + H and
benzyl + HO2 reactions, is also investigated. Decomposition to benzoxyl + OH is fast at
temperatures of 900 K and above. The contribution of benzyl hydroperoxide chemistry to the
ignition and oxidation of alkylated aromatics is discussed. Benzyl radical oxidation chemistry
achieves the conversion of toluene to benzaldehyde, aiding autoignition via processes that either
release large amounts of energy or form reactive free radicals through chain-branching.

Introduction

Alkylated aromatic hydrocarbons are a major and growing
component of liquid transportation fuels, including gasoline
and jet fuel. It is important that we understand the ignition
and oxidation chemistry of these fuel components across the

range of temperature and pressure conditions encountered
in spark ignition and jet engines. Particular uncertainties
remain with regards to the chemistry taking place during the
autoignition of these alkylated aromatics, where high pres-
sures (tens of atmospheres) and moderate temperatures (ca.
800-1200 K) are encountered. Modeling autoignition be-
havior is important, for example, in understanding engine
knock and NOx formation and in designing advanced
homogeneous charge compression ignition (HCCI) engines.
Understanding the low-temperature oxidation chemistry of
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alkylated aromatics in the atmosphere is also of significance,
as these compounds are a major component of air pollution
in urban environments.

As the parent alkylated aromatic, much attention has been
paid to the oxidation of toluene (methylbenzene). It is well-
known that the initial stages of toluene oxidation predomi-
nantly result in the formation of the benzyl radical.1 The
benzyl radical is thermally stable,2 and at low to moderate
temperatures it is removed from combustion systems by
oxidation reactions with species such as O2,

3 OH,4 O,5 and
HO2.

6 Benzyl associates with O2 to form the benzylperoxy
radical in a mildly exothermic reaction (ca. 20 kcal mol-1),3

and the benzylperoxy adduct has little excess energy to go
into forward reactions to new, dissociated products. At higher
temperatures, the activated benzylperoxy adduct does form
some phenol + OH, but it predominantly dissociates back
to benzyl + O2. At lower temperatures and higher pressures,
the activated benzylperoxy adduct is stabilized by bath gas
collisions and is available to participate in further bimolecular
reactions. The benzylperoxy radical is known to undergo a
self-reaction to products including two benzoxyl radicals +
O2 or to react with HO2 to form benzyl hydroperoxide + O2

(an important process in the atmospheric oxidation of
toluene).7 Benzylperoxy can also abstract a H atom from
surrounding hydrocarbons or react with free H atoms to
produce the benzyl hydroperoxide molecule. Benzyl hydro-
peroxide decomposes to the benzoxyl radical + OH with a
relatively low barrier,6 and the benzoxyl radical then
undergoes chain-propagating decomposition reactions, mainly
to benzaldehyde + H.8 In competition with bimolecular
reactions, the benzylperoxy radical will decompose to benzyl
+ O2 with an activation (dissociation) energy of around 20
kcal mol-1. Bimolecular reactions are expected to dominate
at low temperatures, where benzylperoxy radical lifetimes
are large with respect to thermal decomposition, but they
may also be important at higher temperatures, where an
equilibrium concentration of benzylperoxy should be
established.

In this study, we investigate the kinetics and products of
the benzylperoxy + H reaction, using theoretical thermo-
chemical kinetic techniques. The reaction of benzylperoxy
with free H atoms should be of significance to fuel-rich
flames, where H atoms are found at relatively high concen-
trations. Kinetics of the benzylperoxy + H association
reaction are treated using variational transition state theory.
Further reaction of the activated benzyl hydroperoxide adduct
is studied as a function of temperature and pressure in master
equation simulations, with RRKM theory for k(E), providing
branching ratios and apparent rate constants for input to
kinetic models. The role of benzyl hydroperoxide chemistry
in the oxidation and autoignition of alkylated aromatic
hydrocarbons is discussed.

Computational Methods

The G3B3 composite theoretical method is used to study all
species.9 The G3B3 method uses B3LYP/6-31G(d)-optimized
structures and frequencies, with higher-level corrections for
accurate energies. All electronic structure calculations are
performed using Gaussian 03.10 G3B3 results for benzyl

hydroperoxide and its decomposition products are taken from
a previous study,6 while the benzylperoxy radical and
transition state structures for H addition are newly studied
here. The G3B3 calculations represent a compromise between
accuracy and computational efficiency for the relatively large
species studied here (nine heavy atoms). Using the G2/97
test set the G3B3 method reproduces a range of thermo-
chemical properties with a root-mean-square error of (1.0
kcal mol-1.9 Our reported reaction enthalpies and barrier
heights are thought to be accurate to (2 kcal mol-1 (around
two standard deviations). Optimized structures and vibra-
tional frequencies are provided in the Supporting Information
for benzylperoxy, benzyl hydroperoxide, and the transition
state structures TS1-TS4.

The standard enthalpy of formation of the benzylperoxy
radical is calculated from an atomization work reaction. Here,
the 0 K reaction energy for formation of the atomic
constituents in their ground state is first determined, and then
the 0 K benzyl hydroperoxide heat of formation is obtained
using atom reference enthalpies of 69.977, 51.634, 58.984
kcal mol-1 for the C, O, and H,11 as recently recommended.12

The 0 K heat of formation is adjusted to 298 K using
enthalpy corrections (H298 s H0) of 0.251, 1.037, and 1.010
kcal mol-1, for C, O, and H. Entropy and heat capacity values
are obtained using statistical mechanics techniques, with the
rigid rotor-harmonic oscillator (RRHO) approximation.
Vibrational frequencies for rotation about C6H5sCH2OO and
C6H5CH2sOO bonds in the benzylperoxy radical were
removed from the RRHO analysis and treated as hindered
internal rotors using B3LYP/6-31G(d) rotor potentials.

The kinetics of H addition to the peroxy radical site in
benzylperoxy is evaluated using variational transition state
theory.13 The minimum energy potential (MEP) for H
addition is calculated at the B3LYP/6-31G(d) level of theory
and scaled by the G3B3 reaction enthalpy. Rate constants
are calculated as a function of temperature for structures at
0.1 Å intervals along the MEP according to canonical
transition state theory, in the program ChemRate.14 The C-C
and C-O internal rotors in the transition state structures are
modeled using rotor potentials from the benzylperoxy radical,
while the O-O rotor is treated as being similar to that in
benzyl hydroperoxide (a single-fold rotor with 6.3 kcal mol-1

barrier).6 Rate constants are minimized as a function of
position along the MEP to obtain the canonical variational
rate constant at each temperature. All structures on the MEP
possess a single imaginary frequency, with the mode of
vibration corresponding to motion along the bond-breaking
coordinate. The use of canonical transition state theory in
the variational analysis neglects conservation of angular
momentum and is thus expected to provide an upper limit
to the true addition rate constant.

Apparent rate constants in the activated benzylperoxy +
H reaction mechanism are obtained from master equation
simulations, with RRKM theory for k(E), in the ChemRate
program. Simulations are performed for pressures between
0.001 and 1000 atm and temperatures between 300 and 2000
K. Collisional energy transfer is described using an expo-
nential-down model, with ∆Edown ) 500 cm-1, and the bath
gas is N2. Lennard-Jones parameters used for the C7H8O2
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species are σ ) 7 Å and ε/kb ) 500 K. All rate constants
quoted in this study are in s-1 or cm3 mol-1 s-1 units, with
activation energies in kcal mol-1 and temperatures in K.

Results and Discussion

Properties of the Benzylperoxy Radical. The optimized
benzylperoxy radical structure is illustrated in Figure 1,
compared to that for benzyl hydroperoxide. Vibrational
frequencies for benzylperoxy are listed in Table 1. The 38.33
cm-1 vibration is attributed to internal rotation about the
C6H5sCH2O2 bond, while the 89.66 cm-1 vibration corre-
sponds to rotation around C6H5CH2sO2, although both
internal rotational modes appear significantly coupled. Rotor
profiles obtained from relaxed B3LYP/6-31G(d) scans about
these C-C and C-O bonds are presented in Figure 2.

Thermochemical properties [∆fH°298, S°298, Cp(T)] are
reported in Table 2 for the benzylperoxy radical, as well all
other C7 and C6 species in the benzylperoxy + H mechanism
(from ref 6). Smaller decomposition fragments are modeled
using literature thermochemistry.15-18 The G3B3 benzylp-
eroxy heat of formation is calculated as 29.6 kcal mol-1,
while Fenter et al.3b report a relatively similar value of 28.0
( 1.4 kcal mol-1. According to our reported thermochem-
istry, the benzylperoxy + H reaction is 86.7 kcal mol-1

exothermic. This high exothermicity means that the benzyl
hydroperoxide adduct produced in this association process

will be highly activated, with more than enough energy to
proceed on to new decomposition products.

Variational Analysis. Rate constants for the barrierless
benzylperoxy + H addition reaction and the reverse dis-
sociation process have been calculated according to canonical
variational transition state theory. The general procedure
employed here has been successfully used to calculate rate
constants in barrierless H association2d,19 and other13,20

reactions.
A minimum energy profile for H addition to benzylperoxy,

at the G3B3//UB3LYP/6-31G(d) level of theory, is depicted
in Figure 3. The dissociation reaction has a loose transition
state structure, with energies within 1 kcal mol-1 of the
dissociated products at O-H bond lengths of 2.8 Å and
greater. A very loose structure is not unexpected for this
radical recombination reaction, given the large enthalpy
change. Rate constants calculated at each contributing
transition state structure are listed in the Supporting Informa-
tion. The association reaction is found to be controlled by a
very loose 3.0 Å structure at 300 K, tightening to the 2.0 Å
structure at 2000 K. At 2.0 Å, the transition state energy is
6.1 kcal mol-1 below that of the dissociated products, while
at 3.0 Å it is only 0.7 kcal mol-1 below. Fitting the minimum
rate constants to a three-parameter modified Arrhenius
equation using a least-squares procedure, we obtain the rate

Figure 1. Optimized structures for the benzylperoxy radical and benzyl hydroperoxide (B3LYP/6-31G(d)).

Table 1. Vibrational Frequencies (cm-1) of the
Benzylperoxy Radical [B3LYP/6-31G(d)]a

38.33 89.66 142.48
296.97 319.25 416.74
473.09 512.91 611.95
635.67 712.10 764.54
829.92 855.97 859.73
935.16 969.48 999.90

1005.61 1019.60 1058.54
1121.95 1171.11 1194.77
1215.62 1237.28 1278.88
1361.38 1369.22 1379.85
1503.17 1505.45 1547.22
1645.97 1665.05 3095.08
3156.55 3180.64 3188.42
3198.85 3208.27 3215.64

a Values listed in bold correspond to internal rotational modes.

Figure 2. Internal rotor potentials in the benzylperoxy radical
[B3LYP/6-31G(d)].
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expression k [cm3 mol-1 s-1] ) 1.81 × 1012T0.48 exp(-0.21/T)
[the reverse rate expression is k [s-1] ) 6.97 × 1014T0.01

exp(-43.73/T)].
The variational rate constant for benzylperoxy + H is

plotted in Figure 4, as a function of temperature. In addition
to the hindered rotor (HR) treatment of low-frequency
vibrations used here, this rate constant has also been
calculated using free rotor (FR) and RRHO treatments, with
the results included in Figure 4. The FR rate constants are

obtained by treating the C6H5CH2O-OH internal rotor in
benzyl hydroperoxide and in the transition state structures
as a free rotation, with all remaining modes treated as
vibrational frequencies. Because the C-O and C-C rotations
are conserved in the reactants, transition states, and products,
their treatment should have only a minor effect on the rate
constant. In Figure 4 we show that the RRHO treatment
provides rate constants that are consistently around 1013 cm3

mol-1 s-1 from 300 to 2000 K, with the FR rate constants
being higher by around a factor of 5. Rate constants obtained
with the HR treatment are intermediate between the other
results, being close to the RRHO rate constants at low
temperatures (around 2 × 1013 cm3 mol-1 s-1), increasing
to be similar to the FR rate constants at higher temperatures
(around 5 × 1013 cm3 mol-1 s-1). The HR results are used
further in our RRKM modeling of the benzylperoxy + H
reaction. We note that, in the temperature range of interest
(ca. 1000 K and above), both free and hindered rotor
treatment of the internal rotational modes provide rate
constants of similar magnitude.

Benzylperoxy + H Kinetics. The benzylperoxy + H
reaction process is evaluated using the energy surface
depicted in Figure 5 (transition state structures are shown in
Figure 6). The activated benzyl hydroperoxide adduct is seen
to have sufficient energy to proceed to a range of products,
which have been discussed in detail elsewhere.6 The lowest-
energy pathway available is for the concerted formation of
benzoxyl + OH, where the barrier height is 41.1 kcal mol-1

below the entrance channel. Because this is a simple
dissociation, without any intrinsic activation barrier, the
reaction is entropically favored with a loose transition state
structure (i.e., large pre-exponential factor). A second higher-
energy pathway to benzoxyl + OH is also depicted (TS1 in
Figure 6), which proceeds in a stepwise mechanism via the
3-methoxy-4-hydroxy-2,5-cyclohexadien-1-yl radical, al-
though this reaction channel is not expected to contribute
significantly to benzoxyl formation. The next most energeti-
cally favored pathway, behind concerted formation of
benzoxyl + OH, is H2O elimination to benzaldehyde (TS2).
This reaction requires a barrier that is 40.6 kcal mol-1 below
the entrance channel, although the tight transition state
structure results in a small pre-exponential factor. Other
product sets considered include R-hydroxybenzyl
(C6H5C•HOH) + OH (TS3), benzyne (C6H4) + HCHO +
H2O (TS4, which proceeds to the unstable C6H4CH2O
intermediate), and benzyl + HO2. The reaction to benzyl +
HO2 requires the largest barrier of any of the forward reaction
paths (26.3 kcal mol-1 below the entrance channel); however,

Table 2. Enthalpies of Formation (∆fH°298, kcal mol-1), Entropies (S°298, cal mol-1 K-1), and Heat Capacities [Cp(T), T )
300-2000 K, cal mol-1 K-1] for Selected Species in the Benzylperoxy + H Reaction Mechanism

∆fH°298 S°298 Cp(300) Cp(400) Cp(500) Cp(600) Cp(800) Cp(1000) Cp(1500) Cp(2000)

benzylperoxy 29.6 93.218 30.993 39.746 47.207 53.241 62.103 68.231 77.257 81.759
benzyl hydroperoxide -5.0 93.275 32.699 42.050 50.181 56.802 66.439 72.940 82.225 86.756
benzaldehyde -8.3 79.021 25.984 33.933 40.804 46.441 54.806 60.557 68.717 72.543
benzyne 111.1 69.075 18.851 24.536 29.302 33.128 38.715 42.553 48.161 50.937
benzoxyl 31.1 84.277 27.994 36.292 43.419 49.233 57.856 63.856 72.685 77.062
R-hydroxybenzyl 11.1 82.855 29.443 37.990 45.069 50.696 58.870 64.536 72.997 77.185

Figure 3. Minimum energy potential for O-H bond dissocia-
tion in benzyl hydroperoxide at the G3B3//UB3LYP/6-31G(d)
level. The dashed line indicates the energy of infinitely
separated products.

Figure 4. Variational rate constants for the barrierless
benzylperoxy + H reaction, calculated using hindered rotor
(HR), free rotor (FR), and rigid rotor-harmonic oscillator
(RRHO) treatments. Solid lines represent three-parameter
Arrhenius fits.
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the loose (barrierless) transition state structure for C-OOH
dissociation results in a favorable pre-exponential factor.

Fitted rate constants to important products in the benzylp-
eroxy + H reaction, at pressures between 0.01 and 100 atm,
are listed in Table 3. Rate constants to all considered product
sets in the benzylperoxy + H mechanism are plotted in
Figure 7, at 10 atm pressure (typical of autoignition condi-
tions, where this reaction is expected to be of most
significance). Collisional stabilization of benzyl hydroper-
oxide is the dominant channel at low temperatures, but it
becomes unimportant at temperatures of 800 K and above,
even at these relatively high pressures. From around 700 K
and above, benzoxyl + OH (via barrierless O-OH dissocia-
tion) are by far the dominant products, due to the favorable
enthalpy and entropy of this path. Even at high temperature,
the benzoxyl + OH product is formed with rate constant
close to 2 orders of magnitude higher than that of any other
product set. At higher temperatures, the formation of benzyl
+ HO2 plays a small role, contributing around 2% of the
total products at 1500 K and above. The R-hydroxybenzyl
+ OH product set is the next most important, accounting
for around 1% of the forward reaction at higher temperatures,
followed by benzaldehyde plus H2O. The reaction to ben-
zaldehyde + H2O and all slower reactions are deemed to be
unimportant and are not considered further.

It is clear from our results that under relevant autoignition
conditions the dominant products of the benzylperoxy + H
reaction are benzoxyl + OH. The potential significance of
this reaction in toluene oxidation is discussed later in this
contribution. For 10 atm we predict some formation of benzyl
hydroperoxide at temperatures below 800 K, and the potential
importance of these products is considered here. Figure 8
shows a plot of the branching ratio to benzyl hydroperoxide
collisional stabilization in the benzylperoxy + H reaction,
as a function of temperature and pressure. At pressures below
1 atm, benzyl hydroperoxide is never an important reaction
product, even at very low temperatures (e.g., 500 K). At
between 10 and 100 atm, representative of ignition conditions
in an SI engine, quenching of the benzyl hydroperoxide
adduct is significant at up to moderate temperatures, but
drops away rapidly as we approach 800 K, which is at the
lower end of ignition temperatures. Similar results were
found previously for benzyl hydroperoxide formed in the
benzyl + HO2 mechanism.

We have investigated the effect of collisional energy
transfer on benzyl hydroperoxide formation, simulating the
reaction kinetics with ∆Edown values of between 500 and 3000
cm-1. While N2 (which we used as the buffer gas in our
simulations) is a poor collider, the presence of more efficient
colliders like toluene and other hydrocarbons in an actual

Figure 5. Energy diagram for the benzylperoxy + H reaction mechanism (G3B3 298 K enthalpies).
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flame can lead to improved collisional energy transfer. This
phenomenon may be the reason why ∆Edown values on the
order of 2000 cm-1 were required to reproduce experimental
falloff behavior in several unimolecular reactions that we
recently studied.2d,21 Branching ratios to benzyl hydroper-
oxide formation, as a function of ∆Edown, are plotted in Figure
9; while large values of ∆Edown increase the yield of benzyl
hydroperoxide at low temperatures, this product still becomes
negligible for 800 K and above. At these temperatures, the
benzyl hydroperoxide adduct lifetime is short toward de-
composition to benzoxyl + OH, relative to collision stabi-
lization, and cannot be quenched in any appreciable quantity.
Accordingly, benzyl hydroperoxide formed via the benzylp-
eroxy + H reaction (or benzyl + HO2) is unlikely to play a
role in toluene oxidation.

Benzyl Hydroperoxide Decomposition. Our kinetic simu-
lations demonstrate that chemically activated benzyl hydro-
peroxide formed in the benzylperoxy + H association reacts
to new products, with negligible collisional stabilization. The

same applies for the benzyl + HO2 reaction. Benzyl
hydroperoxide can form, however, via other routes. Particu-
larly, benzylperoxy will abstract a H atom from HO2,

7

toluene, and other molecules with benzylic or allylic C-H
bonds, forming benzyl hydroperoxide. While the
C6H5CH2OO-H bond in benzyl hydroperoxide is weak (86.7
kcal mol-1), the C6H5CH2sH bond in toluene is similar (91.7
kcal mol-1), making this abstraction reaction almost ther-
moneutral (5 kcal mol-1 endothermic). Reaction of benzylp-
eroxy with HO2 is an important process in the atmospheric
degradation of toluene and should also be of some signifi-
cance in combustion systems.7

Benzyl hydroperoxide decomposes to benzoxyl + OH
according to the high-pressure limit rate expression k [s-1]
) 3.29 × 1013T0.42 exp(-20.08/T). This corresponds to an
activation energy of 39.89 kcal mol-1 and a pre-expontial
factor (A′Tn) of 6 × 1014 s-1 at 1000 K. Rate constants have
been calculated for this decomposition reaction from a
steady-state solution of the master equation, at pressures

Figure 6. Transition state structures for reactions in the benzylperoxy + H mechanism: benzaldehyde + H2O (TS1), benzyne
+ HCHO + H2O (TS2), 3-methoxy-4-hydroxy-2,5-cyclohexadien-1-yl (TS3), and R-hydroxybenzyl + OH (TS4). B3LYP/6-31G(d)
level; displacement vectors illustrated.
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between 0.01 and 100 atm; the results are plotted in Figure
10, with fitted rate expressions listed in Table 4. Benzyl
hydroperoxide lifetimes are shorter than 1 ms at temperatures
of around 900 K and above for all pressures, making this
reaction likely to proceed in an internal combustion engine.
At temperature and pressure conditions relevant to the
troposphere (1 atm and 300 K), the lifetime of benzyl
hydroperoxide toward unimolecular decomposition is around
1 × 1015 s, making this reaction unimportant. Instead, benzyl
hydroperoxide will be photolyzed, or will participate in
bimolecular reactions with, for example, OH radicals. Several
pathways to benzoxyl other than benzyl hydroperoxide
decomposition are available at ambient conditions (for
example, benzylperoxy + NO and the benzylperoxy self-
reaction). Benzoxyl formed via these processes will decom-

pose to benzaldehyde + H with a lifetime of around 1 s,8

and this should be the dominant mechanism for benzoxyl
radical removal in the troposphere.

Discussion

It is apparent, from work presented here and elsewhere, that
benzyl hydroperoxide and the benzoxyl radical are key
intermediates in benzyl radical oxidation, particularly under
conditions relevant to autoignition and atmospheric oxidation.
Scheme 1 depicts the major reaction pathways expected to
take place in benzyl radical oxidation under ignition and/or
atmospheric conditions, based upon our current understand-
ing (some species are formed as transient activated adducts
and/or as stable quenched intermediates). Another potential

Table 3. Apparent Rate Parameters to Important Product Sets in the Benzylperoxy + H Reaction as a Function of Pressure

A′ (cm3 mol-1 s-1) n Ea (kcal mol-1)

benzylperoxy + H f benzoxyl + OH (0.01 atm) 2.90 × 1012 0.41 0.47
benzylperoxy + H f benzoxyl + OH (0.1 atm) 1.49 × 1013 0.21 0.87
benzylperoxy + H f benzoxyl + OH (1 atm) 3.80 × 1014 -0.19 1.89
benzylperoxy + H f benzoxyl + OH (10 atm) 1.36 × 1017 -0.87 4.49
benzylperoxy + H f benzoxyl + OH (100 atm) 8.26 × 1015 -0.42 5.83
benzylperoxy + H f benzyl hydroperoxide (0.01 atm, <700 K) 5.66 × 1048 -14.95 2.82
benzylperoxy + H f benzyl hydroperoxide (0.01 atm, g 700 K) 1.49 × 10252 -84.99 13.99
benzylperoxy + H f benzyl hydroperoxide (0.1 atm, <700 K) 1.39 × 1057 -16.16 6.39
benzylperoxy + H f benzyl hydroperoxide (0.1 atm, g700 K) 1.28 × 10141 -51.10 -44.94
benzylperoxy + H f benzyl hydroperoxide (1 atm, <700 K) 4.35 × 1060 -15.92 11.40
benzylperoxy + H f benzyl hydroperoxide (1 atm, g700 K) 4.65 × 10125 -46.44 -60.47
benzylperoxy + H f benzyl hydroperoxide (10 atm, <700 K) 1.91 × 1031 -5.87 4.98
benzylperoxy + H f benzyl hydroperoxide (10 atm, g700 K) 4.77 × 10287 -95.60 6.05
benzylperoxy + H f benzyl hydroperoxide (10 atm, <700 K) 2.25 × 1031 -5.90 5.00
benzylperoxy + H f benzyl hydroperoxide (100 atm, g700 K) 4.78 × 10307 -101.60 15.47
benzylperoxy + H f benzyl + HO2 (0.01 atm) 5.73 × 101 3.18 -0.33
benzylperoxy + H f benzyl + HO2 (0.1 atm) 8.48 × 103 2.55 0.81
benzylperoxy + H f benzyl + HO2 (1 atm) 1.96 × 104 2.47 1.43
benzylperoxy + H f benzyl + HO2 (10 atm) 1.63 × 109 1.07 5.06
benzylperoxy + H f benzyl + HO2 (100 atm) 5.23 × 101 3.38 3.79
benzylperoxy + H f R-hydroxybenzyl + OH (0.01 atm) 9.76 × 10° 3.30 -0.87
benzylperoxy + H f R-hydroxybenzyl + OH (0.1 atm) 8.90 × 101 3.03 -0.31
benzylperoxy + H f R-hydroxybenzyl + OH (1 atm) 4.22 × 103 2.56 0.93
benzylperoxy + H f R-hydroxybenzyl + OH (10 atm) 2.17 × 105 2.12 3.15
benzylperoxy + H f R-hydroxybenzyl + OH (100 atm) 1.43 × 101 3.44 3.36

Figure 7. Apparent rate constants at 10 atm to all considered product sets in the benzylperoxy + H reaction mechanism. Solid
lines represent three-parameter Arrhenius fits.
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reaction not illustrated in Scheme 1 is that of benzylperoxy
with OH, which should form benzoxyl + HO2 (such reactions
are known to be significant in alkyl radical oxidation
kinetics).22 Benzyl hydroperoxide will also react with OH
via an addition mechanism. Ipso addition is expected to result
in the formation of phenol plus the hydroperoxymethyl
radical (CH2OOH), which will dissociate to HCHO + OH.
Free H atoms will also effect this addition/elimination
sequence, resulting in benzene + HCHO + OH.

Most of the reactions included in Scheme 1 are now
relatively well characterized, from both experiment and
theory. While benzoxyl radical decomposition has recently
been studied theoretically, further work is required to better
understand the dissociation products of the highly activated
benzoxyl radical that forms in the benzyl + O reaction (as
well as the potential products of ring addition). Also, little
information on the potentially important benzylperoxy +
benzyl reaction is available (our thermochemistry predicts

that this reaction will yield two benzoxyl radicals in a
reaction that is 19.5 kcal mol-1 exothermic).

All of the reaction pathways illustrated in Scheme 1
ultimately produce the benzoxyl radical, highlighting the key
role that this intermediate plays in aromatic oxidation
chemistry. The further products of benzoxyl decomposition
are benzaldehyde + H, benzene + HCO, and phenyl +
HCHO, where branching among these three product sets is
dependent on temperature and on the energy at which
benzoxyl is formed. Benzyl hydroperoxide is also seen to
play an important role in benzyl radical oxidation, both as
an intermediate in the benzyl + HO2 and benzylperoxy +
H reactions and as a stable product from hydrogen abstraction
by benzylperoxy (where RH is a hydrocarbon or HO2). In
combustion systems, benzyl hydroperoxide will decompose
the benzoxyl + OH, but in the atmosphere, the further
reactions of this species are less certain. Here, photolysis to
benzoxyl + OH should be important, along with OH addition
at the aromatic ring sites. Below, the potential role of benzyl
hydroperoxide in the oxidation and ignition of toluene is
explored in more detail.

The major reactions in the benzyl + O2 + H reaction
sequence are listed below, along with reaction enthalpies.
Hydrogen atom addition to benzylperoxy produces the
benzoxyl radical + OH in a considerably exothermic process.
The benzoxyl radical is unstable, and is unlikely to exist for
any significant lifetime in a thermal environment. Benzoxyl
predominantly decomposes to benzaldehyde + H, although
benzene + HCO and phenyl + HCHO are also important
product sets, particularly at higher temperatures.8 Irrespective,
all three decomposition reactions are chain-propagating.
When benzoxyl decomposes to benzaldehyde, the H atom
initially consumed by benzylperoxy is regenerated. The
overall reaction up to this point is benzyl + O2 f
benzaldehyde + OH (∆H ) -51.5 kcal mol-1). While this
is a chain-propagating process and not directly the type of
chain-branching reaction needed to initiate ignition, it does
have the overall effect of converting the very unreactive
benzyl radical into highly reactive OH, with a significant
release of energy. Once OH is formed, it will readily abstract

Figure 8. Branching ratios to benzyl hydroperoxide as a
function of temperature and pressure in the benzylperoxy +
H reaction mechanism.

Figure 9. Branching ratios to benzyl hydroperoxide at 10 atm,
as a function of ∆Edown.

Figure 10. Rate constants for benzyl hydroperoxide decom-
position to benzoxyl + OH. Solid lines represent three-
parameter Arrhenius fits, dashed line represents high-pressure
limit.
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a H atom to form H2O. For fuels like toluene (and other
methylbenzenes), the predominant process will be to abstract
a weak benzylic H atom (BDE of 86.7 kcal mol-1, versus
118.8 kcal mol-1 for HO-H). Including this reaction in our
scheme, we arrive at an overall process in which toluene is
oxidized by O2 to benzaldehyde and water, along with a large
production of energy. The exothermicity of this overall
process aids ignition by increasing temperature, facilitating
chain-branching decomposition reactions such as H2O2 f
2OH.

The similar benzyl + HO2 reaction process is known to
play a key role in methylbenzene autoignition. In a recent

experimental and kinetic modeling study on xylene autoi-
gnition, ignition delays were found to be most sensitive to
the methylbenzyl + HO2 association reactions.23 The im-
portant reactions that we foresee taking place following the
benzyl + HO2 reaction are shown below. Benzyl reacts with
HO2 to form benzoxyl + OH in a mildly exothermic chain
propagating reaction. Following decomposition of the ben-
zyoxyl product, the free H atom can associate with O2 to
regenerate HO2 (of course, other reactions are available), and
if the reaction of toluene with OH is again included, we arrive
at the same overall process as above.

At moderate to high temperatures the H + O2 reaction is
effectively chain branching, producing OH + O in a mildly
endothermic reaction. Under these conditions, the H atom
formed in benzoxyl decomposition will produce OH and O,
as shown below. The O atom formed in this scheme can
further react with benzyl to yield benzaldehyde + H (among
other products), and the benzyl + O f benzaldehyde + O
+ OH chain reaction will be a key process in toluene
autoignition. We expect that aromatic ignition behavior will
be highly sensitive to branching in the benzoxyl decomposi-
tion reaction between product sets such as benzaldehyde +
H, phenyl + HCHO, and benzene + HCO.8

In addition to reaction with H, the benzylperoxy radical
can abstract a hydrogen atom to form stable benzyl hydro-
peroxide. The following scheme indicates the likely reactions
that would occur in toluene combustion. Chain-branching
decomposition of benzyl hydroperoxide follows, which we
show to be rapid at temperatures above around 900 K, with
subsequent pyrolysis of the benzoxyl radical to benzaldehyde
+ H. The overall process is now endothermic by 57.2 kcal
mol-1, but is highly chain branching with the formation of
reactive OH radicals and O(3P) atoms.

Table 4. Apparent Rate Parameters for Decomposition of Benzyl Hydroperoxide to Benzoxyl + OH, as a Function of
Pressure

A′ (s-1) n Ea (kcal mol-1)

benzyl hydroperoxide f benzoxyl + OH (0.01 atm) 8.33 × 1028 -4.39 45.32
benzyl hydroperoxide f benzoxyl + OH (0.1 atm) 1.56 × 1038 -7.33 48.16
benzyl hydroperoxide f benzoxyl + OH (1 atm) 2.03 × 1047 -10.27 50.71
benzyl hydroperoxide f benzoxyl + OH (10 atm) 1.39 × 1055 -12.87 52.60
benzyl hydroperoxide f benzoxyl + OH (100 atm) 1.36 × 1061 -14.95 53.65

Scheme 1. Important Pathways in Benzyl Radical
Oxidation
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From the above reaction schemes we find that oxidation
reactions proceeding via benzyl hydroperoxide aid in toluene
autoignition, through exothermic and chain-branching pro-
cesses. The benzyl radical can react with HO2, or with O2

and then H, in processes that ultimately result in the
exothermic oxidation of toluene to benzaldehyde + H2O. In
order for these processes to take place, preliminary reactions
producing benzyl, H, and HO2 are required. Hydrogen
abstraction from toluene by O2 can also form HO2 (+
benzyl), while toluene will react with most radicals to
produce benzyl. At higher temperatures, toluene will pyrolyse
to benzyl + H. The benzyl radical produced in any of the
above processes will react with O2 and then abstract a
hydrogen atom to produce benzyl hydroperoxide, which
decomposes in a chain-branching reaction at even low
temperatures. Current kinetic models for the oxidation of
toluene and other alkylated aromatics will be improved
through inclusion of the reactions considered here.

Supporting Information Available: Cartesian coor-
dinates and vibrational frequencies for benzylperoxy, benzyl
hydroperoxide, and TS1-TS4; canonical rate constants for
the benzylperoxy + H reaction as a function of transition
state structure and temperature. This material is available
free of charge via the Internet at http://pubs.acs.org.
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Abstract: We present an extension of the Martini coarse-grained force field to carbohydrates.
The parametrization follows the same philosophy as was used previously for lipids and proteins,
focusing on the reproduction of partitioning free energies of small compounds between polar
and nonpolar phases. The carbohydrate building blocks considered are the monosaccharides
glucose and fructose and the disaccharides sucrose, trehalose, maltose, cellobiose, nigerose,
laminarabiose, kojibiose, and sophorose. Bonded parameters for these saccharides are optimized
by comparison to conformations sampled with an atomistic force field, in particular with respect
to the representation of the most populated rotameric state for the glycosidic bond. Application
of the new coarse-grained carbohydrate model to the oligosaccharides amylose and Curdlan
shows a preservation of the main structural properties with 3 orders of magnitude more efficient
sampling than the atomistic counterpart. Finally, we investigate the cryo- and anhydro-protective
effect of glucose and trehalose on a lipid bilayer and find a strong decrease of the melting
temperature, in good agreement with both experimental findings and atomistic simulation studies.

1. Introduction
Carbohydrates (saccharides), the most abundant product of
photosynthesis, play an important role in the energetic
metabolism of living species and the signaling and im-
munological responses and are a fundamental component of
the external cell wall of many organisms.1 In addition,
saccharides are present in a variety of emerging classes of
biomimetic materials.2 Furthermore, due to their cryo- and
anhydro-protective properties, many sugars have been shown
to be effective stabilizers of biological components, such as
proteins and membranes, in the low-temperature or dehy-
drated states.3–5 This class of compounds encompasses a
huge variety of possible monomeric units (differing in

stereochemistry and functionalization) that can be connected
in chains presenting a virtually infinite number of possible
residue sequences, linkage types, and degrees of branching.
Despite their importance, the experimental characterization
of the structural and dynamical properties of oligosaccharides
in general has proven rather problematic. Unlike proteins,
nucleic acids, and lipids, which tend to predominantly adopt
a well-defined (native) conformation under the conditions
where they are biologically functional, carbohydrates are
typically associated with a high extent of conformational
heterogenity. As a result of this structural diversity and
conformational heterogenity, carbohydrates arguably repre-
sent the most challenging class of biomolecules in terms of
experimental characterization and elucidation of structure-
function relationships.6–8 Static structures of carbohydrates
may often be obtained from (X-ray) crystallography (of
crystals or fibers), but it is always uncertain whether these
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molecules adopt similar conformations in solution as in the
solid state. On the other hand, nuclear magnetic resonance
(NMR) spectroscopy provides information about carbohy-
drates in solution but only in the form of averages over all
the populated conformational states present in solution (i.e.,
over all the molecules or molecular segments in the sample
as well as over the time scale of the NMR experiment). Many
other experimental techniques (e.g., electron microscopy,
light or neutron diffraction, circular dichroism, infrared
spectroscopy, or rheology) provide useful but even more
indirect information about carbohydrate conformations.

Molecular dynamics (MD) simulations can, in principle,
provide the link between structure and physical properties
that are more readily measured (i.e., radius of gyration, gel
transition temperature; mostly concerning long polymers1,9–13).
Many force fields have been extensively parametrized for
carbohydrates14–19 and have been used to provide details of
the structure and dynamics at an all-atom (AA) level, for
example, to explore the ring puckering of glucose,20–22

conformational changes in disaccharides and trisacchari-
des,14,23–25 and stability of oligosaccharides like amylose and
Curdlan.9,26–28 However, such studies are necessarily limited
to small system sizes with a limited sampling of the
potentially very large conformational space. Simulations of
longer oligosaccharides or the association of these in colloidal
systems are very challenging at the AA level.

An alternative to the AA approach is the use of coarse-
grained (CG) force fields, which provide a useful methodol-
ogy to study large systems on a long time scale at reasonable
computational cost. CG models can capture the most
fundamental physical and chemical properties after averaging
out some of the atomistic information, both spatially and
temporally. A large diversity of CG approaches for biomo-
lecular systems is available. They range from qualitative,
solvent-free models to models including chemical specific-
ity.29 Most of the effort has been canalized into the
development of models for the simulation of proteins and
lipids. The design of reliable coarse-grained models for
carbohydrates is hindered by their high structural diversity
and the limited amount of experimental data available.
Pioneering efforts in the context of glucose-based carbohy-
drates have been undertaken by Liu et al.30 and Molinero et
al.,31 in which the glucose ring is represented by three particle
types and its behavior in water is optimized with respect to
simulations at the AA level. Bonded interaction potentials
are obtained by Boltzmann inversion of the distributions of
the bonds, angles, and torsion from atomistic simulations of
glucose. Amylose chains have been used as a test model in
both cases, revealing excellent agreement with experimental
data. Another possible approach is the one adopted by Bathe
et al.,32 in which explicit atom models of isolated disaccha-
rides are used to generate pretabulated potentials of mean
force for the glycosidic torsions. In addition, electrostatic
and steric interactions between nonadjacent residues were
included, making use of virtual sites. The model was
optimized for application to glycosaminoglycans. In spite
of some promising results, these approaches cannot be easily
extended to other systems without a full reparameterization
or be used in combination with other (bio)molecules. A more

general force field for CG simulations has been developed
by one of us,33–35 coined the Martini force field. It is based
on a four-to-one mapping scheme, implying that on average
four heavy atoms and associated hydrogens are represented
as a single CG site. The Martini model has been parametrized
extensively by using a chemical building block principle.
Its key feature is the reproduction of thermodynamic data,
especially the partitioning of the building blocks between
polar and nonpolar phases. It has been successfully applied
to a range of lipid and protein systems.36–38

In this work, we extend the Martini force field to include
carbohydrates. We base our parametrization on the confor-
mational sampling of small carbohydrates with our CG model
in comparison to AA simulations. In addition, octanol/water
partitioning free energies are calculated to select the ap-
propriate CG particle types. The set of carbohydrates used
in the parametrization is illustrated in Figure 1 and comprises
the monosaccharides glucose (G) and fructose (F) and the
disaccharides sucrose (SUC), trehalose (T), maltose (M),
cellobiose (C), kojibiose (K), sophorose (S), laminarabiose
(L), and nigerose (N). The group of disaccharides includes
the most important sugar-sugar linkages (1-1, 1-2, 1-3,
1-4) except for the 1-6 linkage, which proved difficult to
model at the CG level. To test the transferability of the
parameters to oligosaccharides, simulations of two different
oligomers (amylose and Curdlan) are presented and com-
pared with their AA counterpart. Finally, the compatibility
of the carbohydrate parameters with the lipid parameters in
the Martini force field is tested by looking at the stability of
the liquid-crystalline phase of a dipalmitoyl-phosphatidyl-
choline (DPPC) bilayer in the presence of glucose and
trehalose solutions.

At this point it is important to stress the inherent limitations
of our CG carbohydrate model. First, the level of coarsening
does not allow distinction between different ring conforma-
tions; the model represents the most populated chair 4C1

puckering state. Second, no distinction is made between
different anomers at the level of a reducing residue.
Consequently, R- and �-anomers are represented by the same
topology. Note, however, that for the glycosidic linkage
between sugar units, the R- and �-linkages are distinguished
at the CG level through the use of different angle and dihedral
interaction potentials. Third, in its current state, the model
can only represent a single conformation (denoted ‘syn’) for
the glycosidic linkage. The more flexible 1-6 linkage is not
considered at present. Finally, the model is aimed at
simulations of saccharides in solution, not in a crystal state.
For a more elaborate discussion of the scope and limitations
of the model, we refer to the last section of the manuscript.

The rest of this article is organized as follows. The
methods section is devoted to giving a detailed account of
the parametrization procedure. It is followed by the results
section, reporting the results obtained for mono-, di-, and
oligosaccharides. A conclusive section, with limitations and
outlook, ends this article.
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2. Computational Methods

2.1. Model. The Martini CG model is used for the basic
parametrization of the carbohydrate force field, which is
therefore fully compatible with the Martini lipid35 and
protein34 models. In this section we provide a brief overview
of the basic parametrization procedure followed for carbo-
hydrates: definition of the mapping and parametrization of
nonbonded and bonded interactions. More details about the
basic Martini model can be found in the original articles.34,35

2.1.1. Mapping of CG Sugars. According to the mapping
procedure for the Martini force field, on average four heavy
particles are represented by one CG site. For a single sugar
ring, consisting of 12 atoms (hydrogen atoms not counted),
three particles are therefore required. This level of resolution
preserves the geometrical shape of the rings (Figure 2A) and
allows for a distinction between different types of monosac-
charides through variations in the bond lengths, angles, and
CG particle types. Disaccharides are modeled as two three-
bead units connected by a single bond, which mimics the
glycosidic linkage (Figure 2B). This geometry allows for the
definition (and subsequent parametrization) of the glycosidic
dihedral angles � and ψ which determine the relative
orientation of the two sugar residues and the flexibility of

the linkage. The set of fine-grained particles represented by
the CG beads is chosen to be different for a monosaccharide
and for the individual residues in a disaccharide. This
somewhat nonobvious choice confers to the model the ability
to represent the typical polar/apolar character of the disac-
charides with the apolar part corresponding to the central
part along the glycosidic linkage. Oligosaccharides are
constructed by connecting disaccharide residues through
additional bonds (Figure 2C).

2.1.2. Parameterization of Nonbonded Interactions. Non-
bonded interactions are described by a Lennard-Jones (LJ)
12-6 potential energy function

with σij representing the distance at zero energy (collision
diameter) between two particles i and j and εij the strength
of their interaction. The other nonbonded component of the
Martini force field, the Coulomb interaction between charged
particles, is not relevant for the saccharides considered in
this work. The Martini model considers two different
particles sizes: normal types and ring particle types, which
differ in the σii value of 0.47 and 0.43 nm, respectively. The

Figure 1. (A) Saccharides considered in this work: glucose (GlcR (G)), fructose (Fru� (F)), maltose (M; GlcR(1-4)Glc�), cellobiose
(C; Glc�(1-4)Glc�), kojibiose (K; GlcR(1-2)Glc�), sophorose (S; Glc�(1-2)Glc�), nigerose (N; GlcR(1-3)Glc�), laminarabiose
(L; Glc�(1-3)Glc�), sucrose (SUC; GlcR(1-2)Fru�), and trehalose (T; GlcR(1-1)RGlc). (B) The definitions of the dihedral angles
� (O5-C1-O1-Cn′) and ψ (C1-O1-Cn′-Cn-1′) are illustrated for maltose.

ULJ(r) ) 4εij[(σij

r )12

- (σij

r )6] (1)

Martini Coarse-Grained Force Field J. Chem. Theory Comput., Vol. 5, No. 12, 2009 3197



strength of the pairwise particle-particle interaction is
determined by the value of the LJ parameter εij. Larger values
(i.e., stronger attraction) mimic polar interactions, whereas
smaller values (weaker attraction) are used to mimic the
hydrophobic effect. In the full interaction matrix, four main
types of interaction sites are differentiated: polar (P),
nonpolar (N), apolar (C), and charged (Q). The special class
of ring-type particles is further denoted by the letter “S” and
has a reduced value of εii. Within a main type, subtypes are
distinguished either by a letter denoting the hydrogen-
bonding capabilities (d ) donor, a ) acceptor, da ) both, 0
) none) or by a number indicating the degree of polarity
(from 1 ) low polarity to 5 ) high polarity). Each of these
particle types is representative of a specific chemical building
block, i.e., inferred from a class of small compounds with
similar chemical properties. The Martini force field has been
parametrized extensively to reproduce the correct partitioning
free energies of small molecules between a diversity of polar
and apolar solvents. The full interaction matrix εij can be
found in the original publication.35

For the parametrization of the saccharides, the chemical
nature of the underlying fine-grained structure is used to
select the most appropriate building block and corresponding
particle types. The division of the saccharides into building
blocks can be done in multiple ways, however, leaving some
room for adjustment. Therefore, the partitioning free energy
of monosaccharides and disaccharides between water and
octanol has been computed to fine tune the appropriate
particle-type selection for the nonbonded interactions. An-

other alternative concerns the use of the normal particle type
versus the ring particle type. On first thought, the ring particle
type might seem more appropriate to model the sugar rings.
However, the class of ring particle types has been param-
etrized based on unsubstituted ring compounds such as
cyclohexane and benzene for which a four-to-one mapping
is inadequate. In contrast, in the case of carbohydrate rings,
the standard four-to-one mapping scheme applies (cf. Figure
2A). The properties of monosaccharide solutions over a large
concentration range were used to test the two possible
models. Note that the partioning free energies do not depend
on this choice, which only affects sugar-sugar interactions.

2.1.3. Parameterization of Bonded Interactions. Three
types of bonded interactions are considered for the carbo-
hydrates. CG particles chemically connected are described
by a harmonic potential Vbond(R)

with equilibrium distance Rbond and force constant Kbond. LJ
interactions between bonded neighbors are excluded. Since
the degrees of freedom are reduced at the coarse-grained
level, it is necessary to preserve the topology of differently
linked sugars by using both angle and dihedral potentials. A
cosine-harmonic potential Vangle(θ) is used for the angles

where Kangle and θ0 are the force constant and equilibrium
angle, respectively. For the dihedrals, a proper dihedral
potential Vpd(φ) is used with a multiplicity of 1

In this case, φ denotes the angle between planes containing
the beads i, j, k and j, k, l, respectively, with equilibrium angle
φpd and force constant Kpd.

The set of bonded parameters featured in eqs 2-4 has
been parametrized by comparison to simulations of sugars
at the AA level. To this end, the AA trajectories were
converted to pseudo-CG trajectories using the center of mass
of the appropriate fine-grained particles39

The vector ri
CG describes the position of the pseudo-CG bead,

p is the number of atoms mapped to a given coarse bead, mj

is the mass of the atom j, and rj is its coordinates. The
mapping between the AA and CG representation is shown
in Figure 2. From the AA trajectory the target distribution
functions were obtained for the various bonds, angles, and
dihedrals considered. In a couple of iterative steps, the CG
parameters were adjusted manually to obtain as close a match
as possible between the pseudo-CG and real CG distributions.

2.2. Simulation Details. 2.2.1. System Setup. The fol-
lowing saccharides were modeled (cf. Figure 1). Monosac-

Figure 2. Coarse-grained mapping for mono-, di-, and
oligosaccharides. (A) Monosaccharides, like glucose, are
represented by three beads B1-B3. (B) Disaccharides, such
as trehalose, are composed of six beads B1-B6, with the
bond between B2 and B4 representing the glycosidic bond.
(C) Oligosaccharides are based on the disaccharide topology
but using an extra angle potential (Φ) for three consecutive
backbone beads. Different colors are used to indicate different
levels of polarity of the CG beads, see Table 3.

Vbond(R) ) 1
2

Kbond(R - Rbond)
2 (2)

Vangle(θ) ) 1
2

Kangle[cos(θ) - cos(θ0)]
2 (3)

Vpd(φ) ) Kpd[1 + cos(φ - φpd)] (4)

ri
CG )

∑
j)1

p

rj.mj

∑
j)1

p

mj

(5)
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charides: glucose (G; R-D-glucopyranose) and fructose (F;
�-D-fructofuranose). Disaccharides: maltose (M; GlcR(1-4)-
Glc�), cellobiose (C; Glc�(1-4)Glc�), kojibiose (K;
GlcR(1-2)Glc�), sophorose (S; Glc�(1-2)Glc�), nigerose
(N; GlcR(1-3)Glc�), laminarabiose (L; Glc�(1-3)Glc�),
sucrose(SUC;GlcR(1-2)Fru�), trehalose(T;GlcR(1-1)RGlc).
Oligosaccharides: maltoheptaose (7 D-glucopyranose mono-
mers in R 1-4 linkage), amylose (26 D-glucopyranose
monomers in R 1-4 linkage), laminaraheptabiose (7 D-
glucopyranose monomers in � 1-3 linkage), and Curdlan
(3 chains of 26 D-glucopyranose monomers in � 1-3
linkage).

For each of these sugars both AA and CG simulations
were performed. The monosaccharide and disaccharide
systems, used for the parametrization, consisted of a single
sugar molecule either in pure water or in water-saturated
octanol. The water-saturated octanol consists of a 0.255
water/octanol molar fraction.40 The oligosaccharides were
simulated either in water or in nonane. An additional set of
CG simulations was performed in which the concentration
of glucose was increased systematically up to supersaturated
solutions (60 wt %). A pure glucose system was also
simulated. The cryo- and anhydro-protection effect of sugars
was investigated by simulating a pre-equilibrated DPPC
bilayer consisting of 64 lipids per leaflet either in pure water
or in saccharide solutions. Two sugars were used for this
investigation: glucose at 4 M (664 sugars and 2166 CG water
particles) and trehalose at 2 M (332 sugars and 2166 CG
water particles) concentration. Moreover, a control system
was used in which the membrane was completely hydrated
(2166 CG waters). All simulations were performed using the
Gromacs package, version 3.3.1.41 Table 1 provides the
complete list of the systems simulated in this work, including
details about compositions and total simulation times. The
details of the simulation parameters are given below,
including a description of the method by which the partition
coefficients were computed.

2.2.2. Coarse-Grained Simulation Parameters. In the
simulations at the coarse-grained level, we followed the
standard simulation protocol used in the Martini parametriza-
tion.35 The nonbonded interactions are cut off at a distance
rcut of 1.2 nm. To reduce generation of unwanted noise, the
standard shift function of Gromacs41 is used in which both
the energy and the force smoothly vanish at the cutoff
distance. The LJ potential is shifted from r ) 0.9 nm to the
cutoff distance. The time step used to integrate the equations
of motion is 20 fs. Note that here and throughout the entire
manuscript actual simulation time is reported (i.e., no scaling
of the time axis has been applied to provide an effective
time scale). The temperature is maintained at 310 K by weak
coupling of the solvent and solute separately to a Berendsen
heat bath42 with a relaxation time of 1 ps. The pressure is
maintained at 1.0 bar by weak coupling to a pressure bath
via isotropic coordinate scaling with a relaxation time of 5
ps. Simulations of bilayers are performed at three different
temperatures (270, 325, and 475 K) with a semi-isotropic
coupling of the lateral and perpendicular box dimensions to
a pressure of 1.0 bar. The topology and parameters for water
and octanol are taken from the Martini force field35 data set.

In the case of nonane, the molecule is represented using two
C1 particles similar to octane.

2.2.3. All-Atom Simulation Parameters. The AA simula-
tions of hexopyranoses were performed using the latest
Gromos force field parameters set for carbohydrates19 (note
that although the Gromos force field is a united-atom force
field, it will be referred to as AA). In the case of furanose
(i.e., in fructose and sucrose), parameters were adapted from
the hexopyranose force field set (see Supporting Information).
Verification of the furanose parameters was done by com-
parison to results from previous simulations43,44 (Figures S1
and S2, Supporting Information) obtained with different force
fields. For each simulation, the solute was placed in the center
of a periodic cubic box with minimum wall-solute distances
of 2 nm. The SPC water model45 was used to solvate the
system. For the simulations in nonane and octanol, the pro-
cedure to set up the systems was similar to that in the aqueous
environment. The parameters for aliphatic hydrocarbons were
taken from the Gromos 53a6 force field.46 A steepest descent
algorithm41 was used to relax the internal interactions in
vacuum. After that, the box was filled with the respective
solvent and the minimization procedure was repeated. In all
cases, a 2 fs time step was used to integrate Newton’s
equations of motion. The LINCS algorithm47 was applied
to constrain all bond lengths with a relative geometric
tolerance of 10-4. Before production time, the systems were
pre-equilibrated by slow heating up to 310 K. The temper-
ature was maintained at 310 K by weak coupling of the
solvent and solute separately to a Berendsen heat bath42 with
a relaxation time of 0.1 ps. Pressure coupling was maintained
at 1.0 bar using an NPT ensamble by weak coupling via
isotropic coordinate scaling with a relaxation time of 1 ps.
Nonbonded interactions were handled using a twin-range
cutoff48 scheme. Within a short-range cutoff of 0.9 nm, the
interactions were evaluated every time step based on a pair
list recalculated every 5 time steps. The intermediate-range
interactions up to a long-range cutoff radius of 1.4 nm were
evaluated simultaneously with each pair list update and
assumed constant in between. To account for electrostatic
interactions beyond the long-range cutoff radius, a reaction
field approach49 was used with a relative dielectric permit-
tivity of 66 for water, 2 for nonane, and 10.3 for octanol.
Analysis of the dihedral distributions of the various disac-
charides in an aqueous environment showed a good agree-
ment with the ones obtained by Pereira et al.25 using the
same force field. Mapping of the AA trajectories to pseudo-
CG trajectories was performed at a frequency of once per
40 ps. Table 1 provides a complete overview of the system
composition and total simulation time for each of the
simulations performed.

2.2.4. Partitioning Free Energies. In order to compute
octanol/water partition coefficients POW directly, the free ener-
gies of solvation of the sugar compounds were calculated in
both aqueous and organic phases. Given the appropriate free
energies of solvation, computation of the partition coefficient
is straightforward. The difference between the solvation free
energy in the aqueous (∆GW) and organic phase (∆GO) is the
partitioning free energy (∆∆GOW) of the carbohydrate between
water-saturated octanol solution and water:
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∆GW and ∆GO were calculated as the free energy difference
∆F of the solute in vacuum (state A) and in the condensed
phase (state B) using the thermodynamic integration (TI)
procedure:50

Here Uuv(λ) denotes the potential energy function describing
the total solute-solvent interaction, the average 〈...〉 is taken
over the MD trajectory, and λ is a coupling parameter that
regulates the strength of Uuv and varies linearly from zero (λA

) 0) to full (λB ) 1) interaction. All bonded interactions were
interpolated linearly; on the other hand, to remove the singu-
larities in the potentials for the nonbonded interactions a soft-
core approach was used.51 Calculations were performed at 25
intermediate λ values until a smooth curve for the free energy
derivative was obtained, which was then integrated numerically
(by trapezoidal integration). For each individual λ point, at least
10 (CG) or 6 ns (AA) was used for the analysis. Additional λ
points, especially in high-curvature regions, were required for
the disaccharides at the AA level. Simulations in vacuum were
performed using a stochastic dynamics approach with the same
number of λ points as used for the water and octanol systems.
To estimate the error in the free energy calculation, each λ set

Table 1. Summary of the Simulations Performed in This Work

composition

water carbohydrate nonane octanol temp. (K) time (ns)

(A) all-atom (AA)

mapping procedure
monosaccharides 876 1 310 200
disaccharides 876 1 310 200

log P oct/water
monosaccharides in vacuum 1 310 25 × 6a

monosaccharides in water 1400 1 310 25 × 6
monosaccharides in octanol 66 1 199 310 25 × 6
disaccharides in vacuum 1 310 25 × 6
disaccharides in water 1400 1 310 25 × 6
disaccharides in octanol 66 1 199 310 25 × 6

oligosaccharides
maltoheptaose in water 7106 1 310 40
maltoheptaose in nonane 1 400 310 40
amylose in water 21 223 1 310 40
amylose in nonane 1 1825 310 40
laminaraheptabiose in water 7106 1 310 40
laminaraheptabiose in nonane 1 400 310 40
Curdlan in water 21 223 1 310 40
Curdlan in nonane 1 1077 310 40

(B) coarse-grained (CG)

mapping procedure
monosaccharides 616 1 310 200
disaccharides 616 1 310 200

log P oct/water
monosaccharides in vacuum 1 310 25 × 10
monosaccharides in water 1000 1 310 25 × 10
monosaccharides in octanol 43 1 519 310 25 × 10
disaccharides in vacuum 1 310 25 × 10
disaccharides in water 1000 1 310 25 × 10
disaccharides in octanol 43 1 519 310 25 × 10

density profile
glucose in solution 0-100% w/w 0-100% w/w 310 50 × 50b

oligosaccharides
maltoheptaose in water 905 1 310 40
maltoheptaose in nonane 1 500 310 40
amylose in water 5137 1 310 40
amylose in nonane 1 2000 310 40
laminaraheptabiose in water 905 1 310 40
laminaraheptabiose in nonane 1 500 310 40
curdlan in water 5137 1 310 40
curdlan in nonane 1 2000 310 40

cryo-protection effect
128 DPPC + 4 M glucose 2166 664 270/325/475 500
128 DPPC + 2 M trehalose 2166 332 270/325/475 500
128 DPPC 2166 270/325/475 500

a Multiple simulations at different λ points were reported; see methods. b Fifty different sugar concentrations were used, simulated for 50
ns at each concentration level.

∆∆GOW ) -2.3RT log POW (6)

∆FBA ) FB - FA ) ∫λA

λB dλ〈∂Uuv(λ)

∂λ 〉
λ

(7)
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was divided in five blocks and averages were calculated for
each block. The total average error was calculated from the
variance between averages over the individual blocks.

3. Results and Discussion

3.1. Monosaccharides. 3.1.1. Topology. The monosac-
charides considered in this work are glucose (G) and fructose
(F). On the basis of the chosen mapping of three CG particles
to represent the sugar rings (see Figure 2), the first step
consisted in the calibration of the bonded parameters. In the
case of the monosaccharides, only three bond potentials (eq
2) are required. The effective bond lengths and force
constants were derived from bond length distributions
obtained from AA simulations, considering the center of mass
of the groups of atoms constituting a CG interaction site (see
Methods section for details). The final parameters for the
bonded interactions are summarized in Table 2. Bond lengths

range between 0.3 and 0.42 nm, similar to the range of bond
lengths used in the standard Martini protein force field.34

The force constants are rather high, reflecting the limited
flexibility of the sugar ring. Note that the AA simulations
only sampled the 4C1 chair conformation, as expected. In
practice, such high force constants may lead to numerical
instabilities with the rather large time steps used in CG
simulations and are better replaced by constraints without
noticeable consequences. The B1-B2 bond of fructose is
somewhat weaker in comparison to glucose, reflecting the
higher intrinsic flexibility of five- versus six-membered rings.

For the selection of the particle types, we used standard
Martini particle types only to ensure compatibility with the
other force field components. Considering the high number
of hydroxyl groups around the ring, we focused on the polar
particle types P4, P3, P2, and P1. The most polar of these,
P4, is representative of the ethanediol building block; the

Table 2. Force Field Parameters CG Carbohydratesa

sugar bond Rbond (nm)
Kbond

(kJ mol-1nm-2) angles θ0 (deg)
Kangle

(kJ mol-1) dihedrals Φpd Kpd (kJ mol-1)

glucose (G) B1-B2 0.375 35 000
B1-B3 0.331 35 000
B2-B3 0.322 50 000

fructose (F) B1-B2 0.309 10 000
B1-B3 0.303 35 000
B2-B3 0.420 50 000

sucrose (SUC) B1-B2 0.222 30 000 B1-B2-B4 130 10 B1-B2-B4-B5 130 25
B2-B3 0.247 30 000 B3-B2-B4 110 150 B1-B2-B4-B6 80 2
B2-B4 0.429 30 000 B5-B4-B2 20 50 B3-B2-B4-B5 -70 20
B4-B5 0.293 30 000 B6-B4-B2 85 150
B4-B6 0.372 30 000

maltose (M) B1-B2 0.222 30 000
B2-B3 0.246 30 000 B1-B2-B4 150 50 B1-B2-B4-B5 110 8
B2-B4 0.561 30 000 B3-B2-B4 140 50 B1-B2-B4-B6 -20 5
B4-B5 0.239 30 000 B5-B4-B2 70 100 B3-B2-B4-B5 -80 5
B4-B6 0.281 30 000 B6-B4-B2 50 25

cellobiose (C) B1-B2 0.242 30 000
B2-B3 0.284 30 000 B1-B2-B4 126 50 B1-B2-B4-B5 30 8
B2-B4 0.518 30 000 B3-B2-B4 120 50 B1-B2-B4-B6 -150 5
B4-B5 0.234 30 000 B5-B4-B2 60 100 B3-B2-B4-B5 -150 5
B4-B6 0.278 30 000 B6-B4-B2 65 25

kojibiose (K) B1-B2 0.222 30 000
B2-B3 0.247 30 000 B1-B2-B4 127 50 B1-B2-B4-B5 165 8
B2-B4 0.470 30 000 B3-B2-B4 81 200 B1-B2-B4-B6 110 10
B4-B5 0.358 30 000 B5-B4-B2 75 400 B3-B2-B4-B5 5 30
B4-B6 0.394 30 000 B6-B4-B2 120 200

sophorose (S) B1-B2 0.222 30 000
B2-B3 0.247 30 000 B1-B2-B4 90 20 B1-B2-B4-B5 40 8
B2-B4 0.432 30 000 B3-B2-B4 125 200 B1-B2-B4-B6 55 10
B4-B5 0.384 30 000 B5-B4-B2 90 350 B3-B2-B4-B5 -135 5
B4-B6 0.399 30 000 B6-B4-B2 125 300

nigerose (N) B1-B2 0.222 30 000
B2-B3 0.247 30 000 B1-B2-B4 87 5 B1-B2-B4-B5 -15 15
B2-B4 0.413 30 000 B3-B2-B4 130 125 B1-B2-B4-B6 -22 15
B4-B5 0.294 30 000 B5-B4-B2 50 250 B3-B2-B4-B5 160 1
B4-B6 0.424 30 000 B6-B4-B2 96 250

laminarabiose (L) B1-B2 0.329 30 000
B2-B3 0.376 30 000 B1-B2-B4 54 80 B1-B2-B4-B5 20 15
B2-B4 0.356 30 000 B3-B2-B4 124 200 B1-B2-B4-B6 55 5
B4-B5 0.276 30 000 B5-B4-B2 44 500 B3-B2-B4-B5 42 5
B4-B6 0.372 30 000 B6-B4-B2 67 800

trehalose (T) B1-B2 0.222 30 000
B2-B3 0.246 30 000 B1-B2-B4 150 100 B1-B2-B4-B5 -80 8
B2-B4 0.512 30 000 B3-B2-B4 95 250 B1-B2-B4-B6 123 5
B4-B5 0.231 30 000 B5-B4-B2 120 80 B3-B2-B4-B5 -40 20
B4-B6 0.220 30 000 B6-B4-B2 65 180

a See Figure 2 for a definition of B1-B6.
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less polar P1 particle type represents propanol. Since the
mapping of the AA structure to the CG model is not unique,
we tested various options trying to optimize the performance
of the model with respect to reproducing the experimental
density and partitioning data (see below). We considered both
normal particle types and the special class of ring “S”
particles. The latter choice seems more logical given the ring
structure of the sugars; however, these ring parameters were
originally derived for use in a 2-to-1 or 3-to-1 mapping
scheme, whereas the current mapping of the sugars is 4-to-
1, consistent with the standard mapping. Although the use
of ring particles improves the density profile for our model
(see the density section below), this particle type decreases
the sugar-sugar self-interaction to such an extent that even
pure sugar remains liquid at room temperature. We decided
not to change the strength of the self-interaction because it
plays a crucial role in the packing and recognition between
different sugar groups. We eventually settled on the topology
as shown in Table 3. The inhomogeneous distribution of the
polarity around the sugar rings is well reflected by the
combination of the two more polar particle types (P3,P4)
with one less polar particle type (P1). The latter maps to the
part of the sugar containing carbons in positions 5 and 6.
As we will show below, using this topology, the experimental
water/octanol partition coefficient as well as the density of
sugar solutions is reasonably well approximated.

3.1.2. Density. To test if our CG model produces density
of aqueous sugar solutions comparable with experimental
data, a systematic set of simulations at different glucose
concentrations was performed. Figure 3 shows the density
of the solution as a function of glucose concentration. We
compared our CG model to data obtained from the litera-
ture.52 We find that the experimental densities are reproduced
to within 10% in the condensed phase (e.g., to 60% w/w).
At low concentrations (up to ∼20% w/w), the agreement is
even better. The underestimation of the density, especially
at higher glucose concentrations, points to an effect due to
sugar-sugar interactions, i.e., the packing of the CG glucose
monomers is not as efficient as it is in reality. The situation
can be improved somewhat by switching to the special class
of ring particle types, which have a smaller effective size as
set by the LJ parameter σii. However, also the effective
interaction strength, controlled by the value of εii, is reduced
for this class of particles; as already mentioned before, this
has the unwanted consequence that even pure sugar systems
are found in a liquid state. With the normal particle types,

pure glucose forms a solid structure. Although we do not
pretend to be able to reproduce the correct crystal packing
with our CG model, at least the effective sugar-sugar
interaction is strong enough to capture the transition from a
solution toward the solid state upon increasing sugar
concentration. Experimentally, the solubility of glucose at
300 K is around 47% w/w content. Using the normal particle
types, visual inspection of the trajectories shows that our
model becomes clearly more crystal-like around 50% w/w,
with increasing aggregation of the solutes and phase separa-
tion of sugar rich clusters surrounded by layers of water.

3.1.3. Partitioning. In the Martini force field development,
reproducing realistic partitioning behavior is of central
importance. To select the optimal particle types for the
carbohydrates, we therefore calculated the octanol/water
partitioning free energies of our basic building blocks,
glucose and fructose, in order to compare the values to either
experimental results or to results obtained from AA simula-
tions. We used the thermodynamic integration approach to
calculate the free energies of solvation of the sugars in both
water and water-saturated octanol. From the difference, the
partitioning free energy is obtained as explained in the
Methods section. Figure 4 depicts a comparison of the ther-
modynamic integration profile for glucose at the AA and
CG levels of modeling. The derivative of the Hamiltonian
H with respect to the integration parameter λ, as well as the
running integrand, is plotted for successive λ points (since
only the solute-solvent interaction is λ dependent, and the
atomic masses are unchanged during the process, ∂H/∂λ )
∂Uuv(λ)/∂λ in eq 7). It is interesting to note that the ∂H/∂λ
profile looks very different for the AA versus the CG model,
especially for the simulations in water. This is caused by
the difference in particle size of the atomistic solvent
molecules versus the CG water beads which unite four
individual water molecules. The sharp drop in the profile at
λ ) 0.6 in the case of the CG water molecules and for both
CG and AA octanol reflects the transition between configu-
rations with overlapping sugar/solvent molecules to the
nonoverlapping, normal, situation at full interaction strength.
For the relatively small AA water molecules, this transition

Table 3. Particle-Type Selection for CG Carbohydratesa

molecule B1 B2 B3 B4 B5 B6

glucose (G) P1 P4 P4
fructose (F) P1 P3 P4
sucrose (SUC) P1 P2 P4 P1 P1 P4
maltose (M) P1 P2 P4 P2 P1 P4
cellobiose (C) P1 P2 P4 P2 P1 P4
kojibiose (K) P1 P2 P4 P2 P4 P1
sophorose (S) P1 P2 P4 P2 P4 P1
nigerose (N) P1 P2 P4 P2 P4 P1
laminarabiose (L) P1 P2 P4 P2 P4 P1
trehalose (T) P1 P2 P4 P2 P1 P4

a A complete overview of non-bonded interactions parameters
can be found in the original Martini force field article.35

Figure 3. Density of aqueous glucose solutions as a function
of concentration. Results from CG simulations at 310 K, for
both ring-type particles (squares) and normal-type particles
(triangles), are shown. For comparison, experimental data52

obtained at T ) 305 K (circles) are included.
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takes place at a much smaller value of λ (not clearly
noticeable). The free energy, however, does not depend on
the details of the integration path and corresponds to the
integrated value at λ ) 1.

The results of the free energy calculations are summarized
in Table 4 and compared to available experimental values.
The CG model reproduces the correct trend for free energies
of solvation, although the actual values are systematically
too low. This observation is in line with the results for
different functional groups in the Martini force field.35 As
long as its application is aimed at studying the condensed
phase and not at reproducing gas/fluid or solid/fluid coexist-
ence regions, the most important thermodynamic property
is the partitioning free energy. Importantly, the water/octanol
partitioning of both monosaccharides can be accurately
reproduced with the current parametrization of the CG model.
A comparison to AA simulations and experimental data
reveals a close agreement to within 2kT.

3.2. Disaccharides. 3.2.1. Topology. Each of the disac-
charides is modeled by two three-bead monosaccharide
residues joined together by a single bond (see Figure 2). As
discussed in the Method section, the monosaccharide units
are represented differently from the individual monosaccha-
rides. Analogous to the procedure followed for the monosac-
charides, the parameters for the bonded interactions were
obtained from a comparison to mapped AA trajectories. The
full set of parameters is listed in Table 2. Bond lengths,
defining the overall geometry of the molecules, vary some-
what depending on the sugar type, are found in the range
0.22-0.4 nm within each of the two sugar residues, and are
slightly larger (up to 0.47 nm) for the B2-B4 bond
representing the glycosidic linkage between them. Little
variability was found for the stiffness of these bonds, so the
force constant was set to 30 000 kJ mol-1 nm-2 for all of

them. Similar to the case of the monosaccharides, these bonds
can be replaced by constraints in practice.

The conformation of disaccharides is mainly determined
by the populations of rotamers around the glycosidic linkage.
At the AA level, these rotameric conformations can be
described by the glycosidic torsional angles � (O5-
C1-O1-Cn′) and ψ (C1-O1-Cn′-Cn-1′) around a (1 - n)-
linkage25 (with n ) 2, 3, 4, 6 and � ) ψ for trehalose). In
the CG representation, the distinction between these dihedral
angles is lost. Instead, the rotameric phase space available
to the disaccharides needs to be represented by a set of
dihedral angles (eq 4) and normal angles (eq 3) along the
B2-B4 glycosidic bond. Upon transformation of the atom-
istic trajectories to effective CG trajectories, specific distribu-
tions for the angles and dihedrals were obtained, reflecting
the conformational freedom of the disaccharides in water.
As an example, Figures 5 and 6 show these distributions for
every angle and dihedral of trehalose. The distributions
obtained with the CG model are also shown, revealing that
the atomistic configurations can be quite accurately mapped
by our simplistic CG topology. The probability distributions
associated with the � and ψ glycosidic dihedral angles are
essentially unimodal. Full rotation around these angles is
observed at most once or twice for ψ (never for �) on the
50 ns time scale in the AA simulation studies performed by
Pereira et al.,25 corroborated with our AA simulations (data
not shown). The exception is the distribution for 1-6 linked
disaccharides (isomaltose and gentiobiose) for which a
bimodal distribution is observed.25 Since it is impossible to
represent such a distribution with the dihedral approach used
here (eq 4), the 1-6 linked sugars were omitted from the
current study and left for future refinement.

The assignment of particle types follows the assignment
done for the monosaccharides, with the exception of the B2
and B4 beads involved in the glycosidic bond. The formation
of a glycosidic bond between two glucose residues decreases
the number of hydroxyl groups, which are largely responsible
for the polarity of the molecule. To mimic this effect, a less
polar particle type, P2, was used for the B2 and B4 beads
(compared to P4 for the monosaccharides, see Table 3). For
sucrose, the polarity was even further decreased for the
correct reproduction of the partition coefficient, see below.

3.2.2. Partitioning. The water/octanol partitioning free
energy, corresponding to the difference in solvation energy
in water and octanol, is summarized in Table 4 for the
different disaccharides considered in this study. Note that
we only calculated the free energies for sucrose and maltose
explicitly; the other sugars share the same particle assignment
with maltose. Test runs showed that the geometrical fine
details and overall conformational flexibility do not affect
the free energies to within the error estimate of 1 kJ mol-1.
For only two of the sugars (sucrose and trehalose) experi-
mental data is available,53 which is well matched by our CG
model. Regarding the other disaccharides, comparison can
be made to the atomistic model, for which we also computed
the free energies of solvation and partitioning as listed in
Table 4. There is a general good agreement between the
results obtained at the atomistic and coarse-grained level.
The atomistic model reveals little effect of the chemical

Figure 4. Thermodynamic integration profiles as a function
of the integration parameter λ for glucose in water (A, C) and
water-saturated octanol (B, D). Panels A and B are obtained
with the AA model and panels C and D with the CG model.
The solid line denotes the derivative of the free energy with
respect to λ; the triangles represent the integrated curve. The
integration has been performed using a trapezoidal scheme.
The integrated value at λ ) 1 corresponds to the free energy
of hydration (A, C) or solvation in water-saturated octanol (B,
D). The magnitude of the error at each λ point is smaller than
the diameter of the circles, i.e., less than 10 kJ/mol for the
AA and 1 kJ/mol for the CG system.
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details of the sugars on their partitioning, justifying our
choice of the same particle types for all disaccharides except
sucrose.

3.3. Oligosaccharides. Molecular systems in which car-
bohydrates are involved are not limited to monosaccharides
or disaccharides but also include long polymeric sugar chains
exhibiting a large variety in monosaccharide composition,
linkage type, and degree of branching. For this reason, the
following part of the article illustrates how the parameters
derived for the simulation of mono- and disaccharides can
be applied to study the structure and dynamics of oligosac-
charides. As an example, two different oligosaccharides have
been studied at both the CG and the AA levels. First, two
amylose-type chains of different lengths are considered as
an example of R 1-4 linked polymers. Second, a triple-
helix structure representing Curdlan is considered as an
example of a � 1-3 linked structure.

3.3.1. Amylose. Before considering the full amylose chain,
we studied the short oligosaccharide maltoheptaose. Malto-
heptaose consists of seven glucose monomers, connected by
R 1-4 glycosidic linkages just like amylose. The behavior
of maltoheptaose was studied both in aqueous and in

nonpolar environments (nonane). Results from the CG
simulations are compared to results obtained with an AA
using a similar setup consisting of a single molecule in excess
solvent.

In our first attempt, we took the parameters derived for
the disaccharides and simply extended the topology to model
the heptamer. However, with this setup, the configurations
sampled at the CG and AA levels did not overlap (data not
shown). Therefore, an extra angle potential (eq 3) was used
to reproduce the correct structural shape of this molecule in
water as well as in nonane. Three consecutive backbone
particles were subject to an angle potential, as illustrated in
Figure 2C. We found that the optimal angle parameters are
an equilibrium angle (θ0) of 154° in water and 120° in nonane
with a force constant (Kangle) of 100 and 250 kJ mol-1

respectively. Including these additional ‘three-sugar’ poten-
tials, the CG representation nicely matches the structure
observed in the AA simulation, as is illustrated by the
snapshots shown in Figure 7B for the case of maltoheptaose
in water. Figure 7A also provides a comparison between the

Table 4. Thermodynamic Parameters of Solvation and Partitioning Calculated for CG and AA Carbohydratesa

molecule
∆GW (AA)
(kJ mol-1)

∆GO (AA)
(kJ mol-1)

∆∆GOW (AA)
(kJ mol-1) log POW(AA)

∆GW (CG)
(kJ mol-1)

∆GO (CG)
(kJ mol-1)

∆∆GOW (CG)
(kJ mol-1) log POW(CG) log POW (exp)

glucose (G) -89 -74 15 -2.5 -60 -43 17 -2.9 -2.8
fructose (F) -80 -69 11 -2.0 -60 -44 16 -2.7
sucrose (SUC) -107 -89 18 -3.0 -103 -83 20 -3.4 -3.3
maltose (M) -121 -96 25 -4.2 -120 -96 24 -4.0
cellobiose (C) -114 -90 24 -4.0 -120 -96 24 -4.0
kojibiose (K) -121 -93 28 -4.7 -120 -96 24 -4.0
sophorose (S) -120 -88 32 -5.4 -120 -96 24 -4.0
nigerose (N) -119 -89 30 -5.0 -120 -96 24 -4.0
laminarabiose (L) -120 -91 29 -5.0 -120 -96 24 -4.0
trehalose (T) -120 -92 28 -5.0 -120 -96 24 -4.0 -3.78

a The partition coefficient of octanol-water log POW is based on the difference between the independently calculated free energy of
hydration (∆GW) and free energy of solvation in water-saturated octanol (∆GO), according to eq 6. Simulation data were obtained at 310 K,
whereas the temperature of the experimental data (log POW(exp)) is 300 K.53 The statistical accuracy of the free energies obtained from CG
simulations is 1 kJ mol-1. The CG values for cellobiose, kojibiose, sophorose, nigerose, laminarabiose, and trehalose were set equal to the
values for maltose (as the topologies are based on the same kind of coarse particle types).

Figure 5. Angle distributions (θ) for trehalose obtained from
AA simulations after mapping to CG particles (black line) and
from CG simulations (red line). Four angles, indicated by the
insets, were used to preserve the characteristic rotameric
states of the disaccharide at the coarse-grained level.

Figure 6. Dihedral angle distributions (φ) for trehalose
obtained from AA simulations after mapping to CG particles
(black line) and from CG simulations (red line). In addition to
the angle potentials (cf. Figure 5), four dihedral angles,
indicated by the insets, were used to preserve the charac-
teristic rotameric states of the disaccharide at the coarse-
grained level.
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temporal evolution of the radius of gyration (RG) of
maltoheptaose in both water and nonane. The average value
for both the AA and the CG simulation in water is 1.05 nm,
which is in agreement with the previous value obtained by
Shimada et al.,13 revealing a more extended structure
compared to the structure obtained by small-angle X-ray
scattering. In nonane, the structure is somewhat more
compact with an average RG of 0.95 (AA) and 0.98 nm
(CG). Judging from the fluctuations of the RG over time,
the AA structure is slightly more rigid compared to the CG
one.

Our results show that, with the addition of an angle term
acting between three consecutive sugar moieties, the short
oligosaccharide maltoheptaose can be quite accurately mod-
eled. The question is, will this suffice to also model the longer
oligosaccharide amylose, the principal component of starch?
Like maltoheptaose, amylose is a linear oligosaccharide of
1-4 R linked glucose monomers. In aqueous solution it
behaves as a flexible random coil with stretches of left-
handed helical segments, which are more pronounced at low
hydration levels.54 In fact, AFM experiments have shown
that after the assisted unfolding of the molecule, it tries to
refold again to a helical conformation. However, this
refolding was not complete55 unless a less polar solvent
(butanol) was used. In general, stable secondary conforma-
tions, known as A-, B-, and V-amylose,54 are formed in either
ionic solutions or less polar solvents. The A and B allomers
consist of parallel left-handed double helices with six
glucopyranosil units per turn, differing only in the number
of helices packed in the unit cell. V-Amylose, cocrystallized
with compounds such as iodine, DMSO,56 alcohols, or fatty
acids, reveals a strict structure of left-handed helix57 with
six to eight glucose residues per turn. Multiple helices form
a central channel in which the additives are complexed. In
fact, a large number of V-amylose crystalline structures have
been obtained, depending on the exact crystallization condi-
tions.54

On the basis of the parameter set for maltoheptaose, several
CG simulations were performed for a 26-glucose amylose

chain. For comparison, AA simulations were performed as
well. Both water and nonane were used as solvents. Figure
8A shows a comparison of the structure formation of the
amylose chain in nonane at the AA and CG level. The initial
conformation was a regular helical structure characterized
by the torsional angles � (O5-C1-O1-C4′) ) 87.27°, ψ
(C1-O1-C4′-C3′) ) 101°, and ω′ (O5-C5-C6-O6) )
-125.97°. After 25 ns simulation, both simulations (AA and
CG) refold to the same helical form characteristic of
V-amylose. This structure proved stable for the remainder
of the simulation (40 ns in total). Figure 9 shows a close-up
view of both the AA and the CG equilibrium structure, with
the values for the pitch of the helix and diameter of the
channel indicated. The atomistic and coarse-grained struc-
tures are nearly indistinguishable. Experimentally, the V-
amylose conformation is observed by X-ray studies11,57 in
complex with nonpolar solvents, in agreement with our
simulations. Moreover, the experimentally determined pitch
value, counting 6 glucose residues per turn, gives an average
value of 7.9 Å. In our simulations, the average value is 7.5
Å (for both AA and CG), in good agreement with the
experiment, given the differences between the experimental
and simulation conditions.

In water, the amylose chain remains largely unfolded
during the simulation, also in agreement with the experi-
mental observation.58 Figure 8B shows typical snapshots of
AA and CG amylose, revealing a somewhat extended, fully
solvated structure. To quantify the degree of extension, the
radius of gyration was calculated. Averaged over 40 ns, the
radius of gyration of the amylose chain is found to be similar
at both levels of resolution, namely, 3.2 and 3.0 nm ((0.1
nm) for the CG and AA system, respectively.

3.3.2. Curdlan. In recent years, there has been a great
interest in the �-1,3-D-glucan series (Curdlan) because they
show antitumor and anti-HIV viral activity in humans.56

After a rigorous purification step, the structure of Curdlan
has been identified as a right-handed triple-helical complex
under aqueous conditions.59 A number of additional crystal
structures60,61 also reveal a triple helix formed by three
parallel independent chains and stabilized by both inter- and
intramolecular hydrogen bonds.28

The CG model of Curdlan was based on the laminarabiose
disaccharide. Similar to the case of extending maltose into
oligomers, an extra angle potential was used for three
consecutive backbone beads (cf. Figure 2C). The value of
this angle was obtained from matching CG to AA conforma-
tions of a chain consisting of seven � 1-3 glucose monomers
in water, sampled over a 40 ns trajectory. The optimal
parameters were found to be θ0 ) 136° with Kangle of 500
kJ mol-1. A simulation of the same molecule was performed
in nonane in order to determine if this angle depends on the
solvent. Contrary to the case of the R 1-4 linked sugars
described above, here we found no significant dependency
of the additional angle potential on solvent environment.

Next, three chains composed of 26 � 1-3 glucose
monomers, representing Curdlan, were simulated in nonane.
The additional angle potential was included. The starting
structure was taken from Deslandes’ CUR data,59 determined
by X-ray crystallography. Figure 10A shows the final

Figure 7. Structure and dynamics of the maltoheptaose
oligomer. (A) Radius of gyration (RG) as a function of the
simulation time for the AA (black lines) and CG (red lines)
systems. (B) Snapshot obtained from the CG (left) and AA
(right) simulation in water.
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structures obtained after 40 ns both at the AA and CG levels
of resolution. The characteristic triple-helical structure of
Curdlan is well preserved. No significant difference was
detected between the average CG and the AA structure. This
is illustrated in Figure 10B, showing root mean squared
deviation (rmsd) between the AA (mapped to CG coordi-
nates) and the CG representation. Moreover, we calculated
the value for the pitch of each turn, which is defined as the
length between the six main-chain glucose units along the
helix c axis.59 The result is also shown in Figure 10B. The
average pitch value for both AA and CG structure, 2.0 nm,
is in good agreement with the experimental value of 1.8
nm,59 despite the differences in environment (apolar solvent
versus crystal). The pitch value obtained in the simulations
also agrees well with previous simulation studies.28 In
addition, we tested the stability of the triple-helix configu-
ration of Curdlan in water at both levels of resolution. We
basically found the same results as observed with nonane as
a solvent, indicating that our CG approach can effectively
mimic the strength of the intra- and intermolecular hydrogen
bonds, preserving Curdlan’s triple-helical structure regardless
of the solvent.

3.4. Cryo- and Anhydro-Protection Effects. The ability
of sugars to act as cryo- and anhydro-protective agents has
been well established.3,62 Several organisms make use of this
property of sugars; by increasing their intracellular sugar
concentration they have been found to survive under low-

temperature or low-hydration conditions over extended
periods of time. The origin of the cryo- or anhydro-protective
effect of membranes is usually explained by different
mechanisms, namely, (i) replacement of the lipid-water
hydrogen bonds by lipid-sugar hydrogen bonds, (ii) entrap-
ment of lipid hydration water, and (iii) vitrification effects.
There is an ongoing debate about which of these mechanisms
dominates in the modulation of many bilayer properties.63

One of these properties is the main phase transition temper-

Figure 8. Structure of amylose in nonane and water. (A) Snapshots of a 26-mer of amylose, simulated in nonane, at AA (top
drawings) and CG (bottom drawings) levels. In both cases, starting from an elongated helix, a transition to a stable V shape is
observed during 25 ns of simulation. (B) After transferring this molecule to an aqueous solution, amylose evidences an increased
flexibility with unfolding of the helical structure.

Figure 9. Structural characteristics of amylose in nonane.
Only backbone particles (gray/red spheres) are shown. The
pitch value (A) and helix diameter (B) of both AA and CG
representations are identical, as indicated.

Figure 10. Comparison of the AA and CG structure of
Curdlan in nonane. (A) Snapshots of the triple-helix structure,
stable for both the AA (left) and the CG (right) systems (each
helix represented by a different color type). (B) Temporal
evolution of the helical pitch (top graph) and rmsd with respect
to the starting structure (bottom graph) for both levels of
resolution. (C) Indication of the pitch distance for a single
helical strand at AA (left) and CG (right) resolution. For best
comparison, only one helix at the AA level (stick representa-
tion with transparent spheres) and one at the CG representa-
tion (red balls) were considered.
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ature of the lipid bilayer, which is lowered in the presence
of sugars. Thus, the biologically relevant liquid-crystalline
phase is stabilized, protecting the cell membrane from
freezing.

In order to test the capabilities of our model to reproduce
this effect, we performed several 500 ns CG simulations of
a DPPC bilayer in the presence of glucose and trehalose at
4 and 2 M, respectively, varying the temperature in the range
270-475 K. A pure DPPC bilayer without sugars was also
simulated for comparison. The area per lipid was used to
monitor the protective effect of the sugars. In Figure 11 the
dependency of the average area per lipid on the temperature
is shown for each of the three systems. A clear difference
between the pure DPPC membrane, on the one hand, and
the DPPC membrane in the presence of sugars, on the other
hand, can be appreciated. Whereas the pure system adopts
an area per lipid of 0.48 nm2 at 270 K, characteristic of a
gel phase, both trehalose and glucose manage to keep the
area per lipid at a value similar to the value at 325 K, in a
liquid-crystalline state. At elevated temperatures, the sugars
appear to have less effect, although the thermal expansivity
(i.e., the slope of the curves in Figure 11) is somewhat
smaller in the presence of the sugars. A close view of the
structural effect of the sugars on the bilayers at the low-
temperature range is depicted in Figure 12. In the pure
system, the DPPC tails at 270 K have adopted a straight
conformation, and the system has transformed into a gel
phase. Note that the Martini model does not reproduce the
experimentally observed tilt of the lipid tails in the gel state.64

However, the bilayer remains in a liquid-crystalline state
when a large amount of glucose is added; this is clearly
noticeable by the disordered acyl chains. The same phenom-
enon was also observed when trehalose was added (using
one-half the concentration of glucose).

Although a real vitrification process cannot be directly
observed at the CG level, our simulations point to a direct
interaction between the sugars and the DPPC lipid head
groups. Figure 13 shows the density profiles of the lipids,
water, and sugars across the bilayer normal. The profile for
glucose shows that the sugars are able to bind to the lipid/
water interface and can penetrate the membrane up to the
level of the carbonyl groups. Consequently, the amount of
water in the interface is reduced. By intercalating between

the head groups, the sugar molecules are replacing part of
the hydrating water and the freezing of the acyl chains is
avoided. The same characteristic was also observed for
trehalose. These results are most easily interpreted in the
context of the water-replacement hypothesis, as has been
proposed by Pereira et al.63,65 and Sum et al.,66 based on
atomistic simulations.

4. Limitations and Outlook

The potential range of applications of the carbohydrate
Martini model is very broad. Along the lines of the
parametrization as presented in this article, the model could
be extended toward other (oligo)saccharides. There are,
however, certain important limitations which should be kept
in mind. An obvious limitation is that the limited resolution
of our CG model prevents the distinction between R and �
anomers of reducing ends as well as the stereochemistry of

Figure 11. Average area per lipid of a DPPC membrane as
a function of temperature. Circles: system with no sugars.
Squares: 4 M glucose solution. Triangles: 2 M trehalose
solution.

Figure 12. Snapshots of CG DPPC bilayers at T ) 270 K.
(A) Gel phase formed in pure water. (B) Fluid phase stabilized
in the presence of 4 M glucose. Lipid tails are depicted in
gray, head groups are shown blue/orange for choline/
phosphate moieties, and sugars are shown in purple. Water
is represented by semitransparent blue dots.
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exocyclic OH groups. In aqueous solution, the sugar hydroxyl
groups are directed outward to oxygen atoms of adjacent
water molecules, thus destroying the intramolecular hydrogen
bonding.67 Furthermore, an important simplification of the
model is that ring puckering (i.e., chair-chair or chair-boat
transformations) in hexopyranoses is completely neglected.
Only the 4C1 chair conformation is considered. This is not a
real problem for the simulation of long polymers, since the
4C1 chair conformation is the dominant puckering state68,69

and the conformations of oligosaccharides are mainly
determined by the accessible rotameric states around the
glycosidic linkage. There are, however, exceptions, notably
idose and some sulfated sugars.22 In the case of furanoses,
a single conformation is less of a problem; five-membered
rings are floppy, but the overall shape does not change
substantially as the ring undergoes pseudo-rotation. Special
attention is also required in systems with high sugar density,
e.g., at low hydration conditions. We have shown an
important deviation of the carbohydrate packing density
under these conditions. This effect is most severe in the limit
of a pure crystalline sugar phase but might also show up,
for instance, in the condensing efficiency of long oligosac-
charide chains in poor solvents.

The disaccharides used in this work exhibit primarily a
single state for the glycosidic bond, which we showed to be
easily represented using a dihedral potential at the CG level.
Whether this is true for oligosaccharides in general is
questionable. The glycosidic linkage is indeed in a single
state (denoted syn) for all R-linked disaccharides but not
necessarily for �-linkages. There is evidence from NMR that
the other conformations are populated in solution, and crystal
structures of protein/sugar complexes indicate antistates.70–72

The underlying AA force field may also exhibit these states,
but revealing them might require more extensive (nonequi-
librium) sampling. Multiple states are only sampled in the
case of the 1-6 bond. As previously found for the rotation
of the hydroxymethyl group in hexopyranoses,18 there is a
clear preference for the gg (ω ) 180°) and gt (ω ) -60°)
rotamers which are characterized by nearly identical free
energies. At the CG level, this behavior is not easily
represented by a single well potential, and therefore, the 1-6

linkage has not been considered here. An alternative to
overcome the above limitations is the use of tabulated two-
or three-well angle or dihedral potentials, which is currently
under investigation. Anyhow, we have to keep in mind that
the underlying atomistic force field may also have its
shortcomings, despite the fact that it has been tested
thoroughly.16,19,22,25 We also note that the current param-
etrization is restricted to D-D sugars; L-L sugars are easily
represented by changing the sign of the dihedral reference
value, but for the L-D sugars, reparametrization of the bonded
parameters is required.

Another important issue is transferability of the CG
parameters. We found that the disaccharide glycosidic bond
parameters were easily extrapolated to oligomers, except for
the use of an additional angle potential required to adopt
the appropriate structure (as judged from AA simula-
tions). This angle potential is likely to be nontransferable,
i.e., it needs to be parametrized for different type of linkages.
Besides, the optimal parameters were found to depend on
the type of solvent, at least in the case of 1-4 R linked
sugars. This is not a desirable situation. Especially for
applications of oligosaccharides near interfaces, the current
parametrization is expected to be problematic.

The parametrization presented in this article should be
viewed only as a first step toward a comprehensive carbo-
hydrate force field. Improvements are expected to take place
hand in hand with the ongoing development of the Martini
force field. The model is easily extendable to include
polymers containing more than one type of sugar-sugar
linkage or featuring branched sugars. Potential applications
include a variety of oligosaccharides such as cellulose and
dextran and mixed systems such as membranes containing
glycolipids and the bacterial cell wall.

As a spin off of the parametrization of the CG force field,
we found that fast folding of oligosaccharides can be
observed in nonpolar solvents, even at an atomistic level of
resolution. As an example, the folding of a 26 sugar residue
amylose chain was presented (cf. Figure 9). Within 25 ns,
the molecule changed its fold from an extended conformation
toward the experimentally observed crystal structure, the
V-shape. In simulations, crystallization conditions of sugars
are seemingly effectively reproduced by the use of low-
dielectric solvents. In contrast to proteins, which possess side
chains of different polarity, sugars can be forced to fold
toward the native crystal structure by replacing the hydration
shell by nonpolar solvents.

In summary, in this article, an extension of the Martini
force field parameters to carbohydrates has been presented.
On the basis of atomistic simulations, a complete set of
bonded parameters was extracted to model the dynamics and
structure of several mono- and disaccharides at the CG level.
Standard particle types of the Martini force field were used
for the nonbonded interactions, assuring that the carbohydrate
model is fully compatible with the other biomolecular
components. Since most applications of the CG model are
naturally in the condensed phase, the reproduction of the
correct partitioning free energies between polar and nonpolar
phases is essential. We demonstrated that our model predicts
values for water/octanol partitioning in close agreement with

Figure 13. Mass density profiles across a CG DPPC bilayer
in the presence of 4 M glucose at T ) 270 K. Crosses:
glucose. Triangles down: phosphate group. Triangles up:
carbonyl groups. Circles: lipid tails. Squares: water.
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atomistic data and where available with experimental mea-
surements. With an additional angle potential to account for
the collective effect of three linked sugar residues, the model
appears well suited for application to oligosaccharides. Both
an amylose chain and a triple-helical Curdlan structure were
modeled; despite the lack of explicit hydrogen bonding at
the CG level, the conformation and dynamics were found to
be in good agreement with simulations at the all-atom level.
In addition, our CG model is able to reproduce semiquan-
titatively the modulating effect of sugars on lipid bilayers,
in particular their cryo- and anhydro-protective effect.

Keeping in mind certain inherent limitations of the CG
carbohydrate model, such as the inability to represent ring
puckering or some of the complex rotameric states exhibited
by certain sugar links, the model shows great promise for
exploring the phase space of carbohydrate systems which
are computationally too costly at full atomistic resolution.
Moreover, the sugar parameters are fully compatible with
the other parameters in the Martini force field, opening the
way to explore a large variety of sugar-containing biomo-
lecular systems at an unprecedented scale.
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Des. 2005, 19, 887–901.

(22) Hansen, H. S.; Hünenberger, P. H. J. Comput. Chem. 2009.
DOI: 10.1002/jcc.21253.

(23) Stenutz, R.; Widmalm, G. Glycoconjugate J. 1998, 15, 415–
418.

(24) Kozar, T.; Tvaroska, I.; Carver, J. P. Glycoconjugate J. 1998,
15, 187–191.

(25) Pereira, C. S.; Kony, D.; Baron, R.; Müller, M.; van Gunsteren,
W. F.; Hünenberger, P. H. Biophys. J. 2006, 90, 4337–4344.

(26) Sugiyama, H.; Nitta, T.; Horii, M.; Motohashi, K.; Sakai, J.;
Usui, T.; Hisamichi, K.; Ishiyama, J. I. Carbohydr. Res. 2000,
325, 177–182.

(27) Yu, H.; Amann, M.; Hansson, T.; Köhler, J.; Wich, G.; van
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Abstract: Coarse-graining is a systematic way of reducing the number of degrees of freedom
representing a system of interest. Several coarse-graining techniques have so far been
developed, such as iterative Boltzmann inversion, force-matching, and inverse Monte Carlo.
However, there is no unified framework that implements these methods and that allows their
direct comparison. We present a versatile object-oriented toolkit for coarse-graining applications
(VOTCA) that implements these techniques and that provides a flexible modular platform for
the further development of coarse-graining techniques. All methods are illustrated and compared
by coarse-graining the SPC/E water model, liquid methanol, liquid propane, and a single molecule
of hexane.

1. Introduction

Computational materials science deals with phenomena
covering a wide range of length- and time-scales from
Ångstrøms (typical bond lengths) and femtoseconds (bond
vibrations) to micrometers (crack propagation) and mil-
liseconds (a single polymer chain relaxation). Depending on
the characteristic time- and length-scales involved, the system
description can vary from first principles and atomistic force
fields to coarse-grained models and continuum mechanics.
The role of bottom-up coarse-graining, in a broad sense, is
to provide a systematic link between these levels of
description.

Here we focus on coarse-graining techniques that link two
particle-based descriptions with a different number of degrees
of freedom. The system with the larger number of degrees
of freedom we denote as the reference system. The system
with the reduced number of the degrees of freedom is referred
to as the coarse-grained system. An example is an all-atom
(reference) and a united-atom (coarse-grained) molecular
representation, where the number of the degrees of freedom
is reduced by embedding hydrogens into heavier atoms.55

Another example, which is treated in detail here, is an all-

atom (three sites) and a single site model of water. Other
examples can be readily found in the literature.1-12

We also assume that the following prerequisites are
satisfied:

(i) Both the reference and the coarse-grained descriptions
are represented by a set of point sites, r ){ri}, i ) 1, 2, ...,
n, in case of the reference system, and R ){Rj}, j ) 1, 2,
..., N, in case of the coarse-grained system.56

(ii) A mapping scheme, i.e., a relation between r and R,
can be expressed as R ) M̂r, where M̂ is a n × N matrix.57

(iii) For the reference system, we have the coordinates
and the forces of a trajectory that samples a canonical
ensemble (or that part of it we are interested in reproducing
on a coarse-grained level).

Then the prime task of systematic coarse-graining is to
devise a potential energy function of the coarse-grained
system, U(R).

To do this, one can use several coarse-graining approaches.
From the point of view of implementation, these approaches
can be divided into iterative and noniterative methods.
Boltzmann inversion is a typical example of a noniterative
method.1 In this method, which is exact for independent
degrees of freedom, coarse-grained interaction potentials are
calculated by inverting the distribution functions of the
coarse-grained system. Another example of a noniterative
method is force matching, where the coarse-grained potential
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is chosen in such a way that it reproduces the forces on the
coarse-grained beads.5,13 Configurational sampling,14 which
matches the potential of mean force, also belongs to this
category. Boltzmann inversion and force matching only
require a trajectory for a reference system.58 Once that is
known, coarse-grained potentials can be calculated for any
mapping matrix M̂.

Iterative methods refine the coarse-grained potential U(R) by
reiterating coarse-grained simulations and by calculating cor-
rections to the potential on the basis of the reference and the
coarse-grained observables (e.g., radial distribution function or
pressure). The simplest example is the iterative Boltzmann
inversion method,15 which is an iterative analogue of the
Boltzmann inversion method. More sophisticated (in terms of
the update function) is the inverse Monte Carlo approach.16

One can also classify systematic coarse-graining ap-
proaches by the micro- and macroscopic observables they
usetoderivethecoarse-grainedpotential,suchasstructure-,1,16,17

force-,5,13,18 and potential-based approaches,19 where the
name identifies the observable used for coarse-graining. Note
that hybrids of these methods are also possible.3,12

With a rich zoo of methods plus their combinations
available at hand, it is natural to ask about an optimal method
for a specific class of systems. On a more fundamental level,
one might question whether the different methods provide
the same coarse-grained potential and whether it is possible
to formulate a set of (even empirical) rules favoring one
method with respect to another. It is obvious this is a difficult
task to be treated analytically, especially for realistic systems.
To assess the quality of a particular coarse-graining tech-
nique, one needs to apply all available methods to a certain
number of systems and to compare and quantify the degree
of discrepancy between the coarse-grained and the reference
descriptions. This is, however, cumbersome due to the
absence of a single package where all these methods
are implemented with the same accuracy and same level of
technical detail.

The main aim of this work is to introduce such a coarse-
graining package. The paper is organized as follows: We
first describe the basic ideas behind each method, paying
special attention to the technical issues one has to overcome
when implementing them. We then illustrate these methods
by coarse-graining systems of different complexities: a three-
site SPC/E water, methanol, propane, and hexane.

2. Methods

Before starting with brief recapitulations of the coarse-
graining methods, we refer the reader to a (far from complete)
list of reviews which cover various aspects of generating
coarse-grained potentials.20-26

2.1. Boltzmann Inversion. Boltzmann inversion is the
simplest method one can use to obtain coarse-grained
potentials.1 It is mostly used for bonded potentials, such as
bonds, angles, and torsions. Boltzmann inversion is structure-
based and only requires positions of atoms.

The idea of Boltzmann inversion stems from the fact that
in a canonical ensemble independent degrees of freedom q
obey the Boltzmann distribution, i. e.:

where Z ) ∫ exp[-�U(q)] dq is a partition function, � )
1/kBT. Once P(q) is known, one can invert eq 1 and obtain
the coarse-grained potential, which, in this case, is a potential
of mean force:

Note that the normalization factor Z is not important since
it would only enter the coarse-grained potential U(q) as an
irrelevant additive constant.

In practice, P(q) is computed from the trajectory of the
reference system, which is sampled either by Monte Carlo,
molecular dynamics, stochastic dynamics, or any other
integrator that ensures a canonical distribution of states.

Boltzmann inversion is simple to implement, however, one
has to be careful with the rescaling of the probability P due
to orientational entropy as well as computational issues.
The probability rescaling can be explained on a particular
example of coarse-graining of a single polymer chain by
beads with bond, angle and torsion potentials. In this case
the coarse-grained potential U depends on three variables,
bond length r, angle θ, and torsion angle �.

Assuming, as before, a canonical distribution and inde-
pendence of the coarse-grained degrees of freedom, we can
write:

If we now compute the histograms for the bonds Hr(r),
angle Hθ(θ), and torsion angle H�(�), then we must rescale
them in order to obtain the volume normalized distribution
functions.59

The coarse-grained potential can then be calculated by
Boltzmann inversion of the distribution functions:

On the technical side, the implementation of the Boltzmann
inversion method requires smoothing of U(q) to provide a
continuous force. Splines can be used for this purpose. Poorly
and unsampled regions, that is regions with high U(q), shall
be extrapolated. Since the contribution of these regions to
the canonical density of states is small, the exact shape of
the extrapolation is less important.

Another crucial issue is the cross-correlation of the coarse-
grained degrees of freedom. Independence of the coarse-
grained degrees of freedom is the main assumption that
allows factorization of the probability distribution, eq 4, and
the potential, eq 6, hence, one has to carefully check whether
this assumption holds in practice. This can be done by
performing coarse-grained simulations and by comparing
cross-correlations for all pairs of degrees of freedom in

P(q) ) Z-1exp[-�U(q)] (1)

U(q) ) -kBT ln P(q) (2)

P(r, θ, �) ) exp[-�U(r, θ, �)] (3)

P(r, θ, �) ) Pr(r)Pθ(θ)P�(�) (4)

Pr(r) )
Hr(r)

4πr2
, Pθ(θ) )

Hθ(θ)

sin θ
, P�(�) ) H�(�)

(5)

U(r, θ, �) ) Ur(r) + Uθ(θ) + U�(�)
Uq(q) ) -kBT ln Pq(q), q ) r, θ, � (6)
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atomistic and coarse-grained resolution, e.g., using a two-
dimensional histogram, analogous to a Ramachandran plot.60

2.2. Iterative Boltzmann Inversion. Iterative Boltzmann
inversion (IBI) is a natural extension of the Boltzmann
inversion method. Since the goal of the coarse-grained model
is to reproduce the distribution functions of the reference
system as accurately as possible, one can also iteratively
refine the coarse-grained potentials using some numerical
scheme. Depending on the update function, this can be done
by using either the iterative Boltzmann inversion15 or the
inverse Monte Carlo16,17 method. We will first discuss the
iterative Boltzmann inversion method.

In the iterative Boltzmann inversion, the coarse-grained
potential is refined according to the following scheme:61

One can easily see that convergence is reached as soon as
the distribution function P(n) matches the reference distribution
function Pref, or, in other words, the potential of mean force,
UPMF

(n) converges to the reference potential of mean force.
IBI can be used to refine both bonded and nonbonded

potentials. It is primarily used for simple fluids with the aim
of reproducing the radial distribution function of the reference
system in order to obtain nonbonded interactions.15 It can
have convergence problems for multicomponent systems,
since it does not account for cross-correlation correction
terms, that is the updates for PAA, PAB, and PBB are not
coupled (the subscript enumerates a single component in a
multicomponent system). For such systems, the inverse
Monte Carlo method works better. The scheme can be
stabilized by multiplying the update function, ∆U(n), by a
factor η ∈ [0..1].

On the implementation side, IBI has the same issues as
the inverse Boltzmann method, i.e., smoothing and extrapo-
lation of the potential must be implemented.

We shall also mention that, according to the Henderson
theorem,25,27 which is a classical analogue of the Hohenberg-
Kohn theorem, the pairwise coarse-grained potential U(r) is
unique up to an additive constant and exists,28,29 which, in
principle, states that all structure-based iterative methods
must converge to the same coarse-grained potential, provided
that their aim is to exactly reproduce pair correlation
functions of the reference system. As we will see later, this
is often not the case in practice, since small changes in the
radial distribution function often lead to big changes in the
pair potential, i.e., it is difficult to control systematic errors
during the calculation of the potential update.

Another issue of coarse-graining is that coarse-grained
models cannot reproduce all the statistical or thermodynamic
properties of the reference system. Pressure, compressibility,
or viscosity30 are often very different from those of the
reference system. In some cases, however, one can correct
for some of these. For example, the viscosity can be adjusted
by tuning the parameters of the thermostat,31 and the pressure
can be corrected iteratively by adding a linear term to the
nonbonded potential:

where A is either a constant, e.g., -0.1kBT,15 or can be
estimated from the virial expansion.32 Compressibility and
pressure, however, cannot be corrected simultaneously.

2.3. Inverse Monte Carlo. Inverse Monte Carlo (IMC)
is another iterative procedure that refines the coarse-grained
potentials until the coarse-grained model reproduces a set
of reference distribution functions. It is very similar to IBI
except that the update of the potential, ∆U, is calculated using
rigorous thermodynamic arguments.

The name “inverse Monte Carlo” is somehow confusing
and is due to the fact that the original algorithm was
combined with Monte Carlo sampling of the phase space.16

However, practically any sampling method can be used (e.g.,
molecular or stochastic dynamics) as long as it provides a
canonical sampling of the phase space.

A detailed derivation of the IMC method can be found in
ref 16. Here we briefly recapitulate the more compact version
for nonbonded interactions, which is outlined in ref 25
emphasizing technical problems encountered during imple-
mentation and application of the method.

The idea of IMC is to express the potential update ∆U in
a thermodynamically consistent way in terms of measurable
statistical properties, e.g., radial distribution function g(r).
Considering a single-component system as an example, we
can write the Hamiltonian of the system as

where U(rij) is the pair potential, and we assume that all
interactions depend only on the distance, rij, between particles
i and j. We further assume that this potential is short-ranged,
i.e., U(rij) ) 0, if rij g rcut.

The next step is to tabulate the potential U(r) on a grid of
M points, rR ) R∆r, where R ) 0, 1, ..., M, and ∆r ) rcut/M
is the grid spacing. Then the Hamiltonian, eq 9, can be
rewritten as

where SR is the number of particle pairs with interparticle
distances rij ) rR, which correspond to the tabulated value
of the potential UR.

On one hand, the average value of SR is related to the
radial distribution function g(r):

where N is the number of atoms in the system, ((1/2)N(N -
1) is then the number of all pairs), ∆r is the grid spacing,
rcut/M, and V is the total volume of the system.

On the other hand, 〈SR〉 is a function of the potential UR

and, hence, can be expanded in a Taylor series with respect
to small perturbations of UR, ∆UR

U(n+1) ) U(n) + ∆U(n)

∆U(n) ) kBT ln
P(n)

Pref
) UPMF

ref - UPMF
(n) (7)

∆Upressure ) A(1 - r
rcut

) (8)

H ) ∑
i,j

U(rij) (9)

H ) ∑
R

URSR (10)

〈SR〉 ) N(N - 1)
2

4πrR
2∆r

V
g(rR) (11)
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The derivatives ∂〈SR〉/∂Uγ can be obtained by using the
chain rule:

Equations 11-13 allow us to calculate the correction for
the potential by solving a set of linear equations:

where SR
ref is given by the target radial distribution function.

The procedure is then repeated until convergence is reached.
A clear advantage of the IMC compared to the IBI method

is that the update of the potential is rigorously derived using
statistical mechanics, and hence, the iterative procedure shall
converge faster with the IMC update than with the empirical
IBI update. Another advantage is that, in the case of
multicomponent mixtures, IMC takes into account correla-
tions of observables, that is updates for UAA, UAB, and UBB

are interdependent (A and B denote different particle types).
In the IBI method, these updates are independent which often
leads to convergence problems for multicomponent systems.

The advantages come, of course, at a computational cost.
As it is clear from eq 13, one has to calculate cross-
correlations of SR. This requires much longer runs to get
statistics that are good enough to calculate the potential
update to a similar accuracy as IBI. The accuracies of the
update functions of IMC and IBI methods are compared in
Section 4.1 for the case of a coarse-grained model of water.

Another issue of the IMC method is the stability of the
scheme. Several factors can influence it: the first, and rather
technical, point is that gref(rR) has to be calculated using
exactly the same convention for the grid as SR (e.g., the
function value should be assigned to the middle of the
interval), otherwise the scheme becomes unstable. Second,
inversion of ARγ requires that it shall be well-defined. This
means that one has to remove the regions which are not
sampled, such as those at the beginning of the radial
distribution function. The convergence can be significantly
improved if a smoothing of the potential update ∆U is used.
Note that it is better to do smoothing of the update function,
not the potential itself, since the latter has more features
which can be lost due to too aggressive smoothing. The
convergence can also be improved by introducing a multi-
plicative prefactor for the update function or by using a
regularization procedure by adding thermodynamic con-
straints.33

Finally, we have also noticed that the systematic error in
〈SRSγ〉 is always higher in the vicinity of the cutoff, which
leads to a shift in the tail of the interaction potential and, as

a result, to a large offset of pressure. The cross-correlation
term 〈SRSγ〉 is also very sensitive to the box size, and special
care must be taken in order to converge the results with
respect to system size. Finite size effects are discussed in
detail in Section 4.2, where we coarse-grain liquid methanol.

2.4. Force Matching. Force matching (FM) is another
approach to evaluate corse-grained potentials.5,13,34 In con-
trast to the structure-based approaches, its aim is not to
reproduce various distribution functions, but instead try to
match forces on coarse-grained beads as closely as possible.62

FM is a noniterative method and, hence, is less computa-
tionally demanding.

The method works as follows: we first assume that the
coarse-grained force field (and hence the forces) depends
on M parameters g1, ..., gM. These parameters can be pref-
actors of analytical functions, tabulated values of the
interaction potentials, or coefficients of splines used to
describe these potentials.

In order to determine these parameters, the reference forces
on coarse-grained beads are calculated by properly reweight-
ing the forces on the atoms:

where Mi ) (∑RwR
2/mR)-1 is the mass of the bead i, index R

numbers all atoms belonging to this bead, fR is the force on
the atom R, mR is its mass, wR are mapping coefficients used
to obtain the position of the coarse-grained bead, Ri )
∑RwRrR. If the center of mass is used in the mapping, then

eq 15 simplifies to the sum of the forces.
By calculating the reference forces for L snapshots, we

can write down N × L equations:

Here f il
ref is the force on the bead i, f il

cg is the coarse-grained
representation of this force. Index l enumerates snapshots
picked for coarse-graining. By running the simulations long
enough one can always ensure that M < N × L. In this case,
the set of eqs 16 is overdetermined and can be solved in a
least-squares sense.

Though the underlying idea of FM is very simple,
implementation-wise it is the most complicated method. Here
we briefly outline the problems, which are then discussed in
more detail in Appendix A.

Going back to the set of eqs 16, one can see that f il
cg is, in

principle, a nonlinear function of its parameters {gi}. It is,
therefore, useful to represent the coarse-grained force field
in such a way that eqs 16 become linear functions of {gi}.
This can be done using splines to describe the functional
form of the forces.5

An adequate sampling of the system requires a large
number of snapshots L. Hence, the applicability of the
method is often constrained by the amount of available
memory. To remedy the situation, one can split the trajectory
into blocks, find the coarse-grained potential for each block
and then perform averaging over the blocks. More details

∆〈SR〉 ) ∑
γ

∂〈SR〉
∂Uγ

∆Uγ + O(∆U2) (12)

ARγ )
∂〈SR〉
∂Uγ

) ∂

∂Uγ

∫ dqSR(q) exp[-� ∑
λ

UλSλ(q)]

∫ dq exp[-� ∑
λ

UλSλ(q)]

) �(〈SR〉〈Sγ〉 - 〈SRSγ〉)

(13)

〈SR〉 - SR
ref ) ARγ∆Uγ (14)

f i
ref ) Mi ∑

R

wRfR
mR

(15)

f il
cg(g1, ..., gM) ) f il

ref, i ) 1, ..., N, l ) 1, ..., L
(16)
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on the technical implementation of force matching using
cubic splines is given in Appendix A.

3. Implementation

3.1. Coarse-Graining Engine. In a nutshell, coarse-
graining is nothing more than an analysis of the canonical
ensemble of a reference (high resolution) system. In addition
to this analysis, iterative methods require canonical sampling
of the coarse-grained system, which can be done using either
molecular dynamics (MD), stochastic dynamics (SD), or
Monte Carlo (MC) techniques. The latter are implemented
in many standard simulation packages. Rather than imple-
menting its own MD/SD/MC modules, the toolkit allows
swift and flexible integration of existing programs in such a
way that sampling is performed in the program of choice.
Only the analysis needed for systematic coarse-graining is
done using the package tools.

The tools include calculations of probability distributions
of bonded and nonbonded interactions, correlation and
autocorrelation functions, and updates for the coarse-grained
pair potential. Analysis tools of the MD package can also
be integrated into the coarse-graining workflow, if needed.

The package offers a flexible framework for reading,
manipulating, and analyzing of MD/SD/MC topologies and
trajectories. Its core is modular, and new file formats can be
integrated without changing the existing code. At the
moment, an interface for GROMACS35 topologies and
trajectories is provided. An interface to ESPResSo++63 is
planned.

The coarse-graining procedure itself is controlled by several
extensible markup language (XML) input files, which contain
mapping and other options required for the workflow control.
In the mapping, it is possible to select groups of interactions
which will be used for coarse-graining or analysis.

3.2. Iterative Workflow Control. The workflowchart is
shown in Figure 1. The workflow is implemented as a shell
script which can, in principle, be run on all available operating
systems and provides the flexibility needed to call external (or
overload existing) scripts and programs written in other
programming languages. An interface to read values from the
steering XML files in C++, Perl, and shell is also provided.

During the global initialization, the initial guess for the coarse-
grained potential is calculated from the reference radial distribu-
tion function or converted from a given potential guess to the
internal format. The actual iterative step starts with an iteration
initialization. It searches for possible checkpoints and copies
and converts files from the previous step and the base directory.
Then the simulation run is prepared by converting potentials
to the format required by the external sampling program, and
actual sampling is performed. Currently, an interface with
GROMACS35 is implemented, and an extension to other
packages is straightforward. After sampling the phase space,
potential update ∆U is calculated. Often the update requires
postprocessing, such as smoothing, interpolation, extrapolation,
or fitting to an analytical form. A simple pressure correction15

can also be seen as a postprocessing of ∆U due to the fact that
it only adds a linear interparticle separation function. Finally,

the new potential is determined and postprocessed. If the
iterative process continues, then the next iterative step starts to
initialize.

4. Examples

We illustrate the package functionality using four systems:
SPC/E water, liquid methanol, liquid propane, and a single
chain of hexane. The systems are chosen in such a way that
the corresponding coarse-grained potentials have already
been obtained using one or more techniques, providing a
good reference point for comparison.

4.1. Coarse-Graining of Water. Water is one of the most
studied liquids from the point of view of both all-atom
representations and coarse-grained models.36,37 Here we
coarse-grain one of the all-atom models of water, the
SPC/E38,39 water model. The corresponding parameters of
this three-site model are given in the caption to Figure 2.
Note that this is a rigid model, i.e., the distances between
two hydrogens as well as oxygen and hydrogens are
constrained during the molecular dynamics runs. For the
coarse-grained representation, we use a one-site representa-
tion with a pair potential U(Rij), where Rij connects the centers
of mass of water molecules i and j.

The all-atom system consisting of 2180 water molecules
was first equilibrated in the NPT ensemble at 300K and 1

Figure 1. Block-scheme of the workflow control for the
iterative methods. The most time-consuming parts are marked
in red.
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bar for 100 ns using the Berendsen thermostat and barostat.40

The last 80 ns were used to determine the equilibrium box
size of 4.031 nm, which was then fixed during the 45 ns
production run in the NVT ensemble using a stochastic
dynamics algorithm.41 For all further analysis, only the last
40 ns were used. The radial distribution function was
calculated using a 0.01 nm grid spacing. The snapshots were
output every 0.4 ps.

Force matching potentials were calculated using blocks
of six snapshots each. Spline grid spacing of 0.02 nm was
used in the interval from 0.24 to 1 nm. For the iterative
procedures, the potential of mean force was taken as an initial
guess for the interaction potential. The coarse-grained box
had the same system size as in the atomistic simulations.
Simulations of the coarse-grained liquid were done using a
stochastic dynamics algorithm.41 When using IBI, 300
iterations of 100 ps each were performed. For IMC, we used
10 iterations of 500 ps each. Additionally, two iterations of
triangular smoothing were applied to the IMC potential
update, ∆U. The cutoff was chosen at 0.9 nm with a grid
spacing of 0.01 nm.

The reference radial distribution function, gref(r), coarse-
grained potentials, and corresponding radial distribution func-
tions are shown in Figure 2a,b. IBI and IMC give practically
the same interaction potential. Although the force-matched
potential has a very similar structure with two minima, the
corresponding radial distribution function is very different from
the target one. Possible reasons for these discrepancies are
discussed in refs 23, 25, and 34, and stem from the fact that
FM aims to reproduce the many-body potential of mean force,
which does not necessarily guarantee perfect pairwise distribu-
tion functions, considering the fact that the basis sets in the
coarse-grained force field may be limited.

Note that all three methods lead to a different pressure of
the coarse-grained system: 8000 bar (IBI), 9300 bar (IMC),
and 6500 bar (FM). Different pressures for the iterative
methods are due to a different accuracy of the potential
update. Indeed, small changes of pressure can significantly
affect the potential, especially its long tail.15,42 However,
they hardly change the radial distribution function due to
the small compressibility of water. One can improve the

Figure 2. Water: (a) Coarse-grained potentials for SPC/E water obtained using different coarse-graining techniques. (b)
Corresponding radial distribution functions. (c) Average error of the potential update function versus number of snapshots used
for calculating the update function. (d) Root-mean-square deviation of reference and current radial distribution function versus
iteration step. One can see that IMC converges faster than that of IBI. Inset of (a) shows van der Waals excluded volume and
coarse-grained representations of a single water molecule as well as parameters used: σ ) 3.166 Å, ε ) 0.650 kJ mol-1, lOH )
1.0000 Å, qH ) +0.4238e, qO ) -0.8476e, θHH ) 109.47°.
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agreement between the iterative methods by using pressure
correction terms for the update.

The performance of the iterative methods depends on two
factors: (i) the average (over all bins) error of the potential
update ε∆U; and (ii) the number of iterations required for
convergence. We define the average error as

where N is the number of bins and ε(∆U(ri)) is the error of
the update function at a separation ri. ε(∆U(ri)) was
calculated using a Jackknife analysis.43

The average error of the potential update is shown in
Figure 2c as a function of the run length. One can see that,
for both methods, the error decreases as 1/�L, where L is
the number of snapshots used for averaging. However, the
prefactor for the IBI update error, which is based on the radial
distribution function, is at least 10 times smaller than of the
IMC update error, which makes use of cross-correlations of

SR. This observation implies that, in order to have the same
accuracy of the update function, IMC needs significantly
longer sampling.

This disadvantage is, of course, compensated by the
efficiency of the update function, which is assessed by
computing the root-mean-square deviation, ∆gn, of the
current and target radial distribution functions:

∆gn is plotted as a function of the number of iterations, n,
in Figure 2d. It is clear that IMC converges much faster than
IBI, though the root-mean-square deviation saturates after
some number of iterations.

4.2. Coarse-Graining of Methanol. Liquid methanol (see
the inset in Figure 3) is the second example of coarse-
graining of nonbonded interactions that we present here. In
fact, FM has already been used to coarse-grain this system,42

and contrary to water, the liquid structure (radial distribution
function) is well reproduced by the FM coarse-grained

Figure 3. Methanol: (a) Coarse-grained potentials. (b) Corresponding radial distribution functions. (c) coarse-grained potentials
using 10 IMC iterations for simulation boxes with 1000, 2000, and 8000 methanol molecules (box size 4.09, 5.15308, and 8.18
nm) equilibrated at the same density. (d) Root-mean-square deviation of reference and the current radial distribution function
versus number of iterations. Similar to liquid water, IMC converges faster than IBI. The convergence saturates and the saturation
error strongly depends on the system size. The inset of (a) shows the van der Waals excluded volume and coarse-grained
representations of a methanol molecule.

ε∆U ) 1
N ∑

i)0

N

ε(∆U(ri)) (17)
∆gn

2 ) ∫ [gref(r) - g(n)(r)]2 dr (18)
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potential. In addition, the excluded volume of methanol is
larger than that of water, and the undulations of the radial
distribution function extend up to 1.5 nm. As we will see,
this leads to pronounced finite size effects for IMC, since it
has a nonlocal potential update. FM and IBI do not have
this problem, since the IBI potential energy update is local,
and FM is based on pair forces. The range of the latter is
much shorter than the correlation length of structural
properties (such as undulations of the radial distribution
function), which may propagate over the boundaries for small
boxes.

Simulation parameters were taken from ref 42, and
OPLS44,45 all-atom force field was used. Atomistic simula-
tions were performed with 1000 methanol molecules in a
cubic box (4.09 nm box size) at 300K using the Nosé-Hoover
thermostat.46,47 The system was equilibrated for 2 ns
followed by a production run of 18 ns. The reference radial
distribution function was calculated using snapshots every
0.5 ps and is shown in Figure 3b.

The FM potential was calculated using blocks of six frames
each and using a spline grid of 0.02 nm. With this potential,
coarse-grained simulations were performed using a stochastic
dynamics integrator and using 1000 beads with the same box
size and the same temperature as in the atomistic simulations.
The system was equilibrated for 40 ps followed by a
production run of 160 ps. Snapshots were stored every 5 ps
and used to calculate the radial distribution function.

For the iterative procedures, the potential of mean force
was taken as an initial guess. The cutoff was chosen at 1.54
nm with a grid spacing of 0.01 nm. For IBI, 300 iterations
were performed using stochastic dynamics with the same
parameters used in the FM-based procedure. The IMC
iterations were performed with 8000 molecules and a box
size of 8.18 nm. The total length of the run was 1 ns, and
snapshots were stored every 0.2 ps. Two smoothing steps
were used at each iteration for the potential update, ∆U.

The coarse-grained potentials for all methods are shown
in Figure 3a. In spite of small differences between the coarse-
grained potentials, the agreement between the reference and
the coarse-grained radial distribution functions is excellent,
as can be seen from Figure 3b.

It is important to mention that the IMC method, which has
a nonlocal update, is prone to systematic errors due to finite
size effects and, hence, requires much larger simulation boxes
in order to calculate the potential update. This is due to artificial
cross-correlations of SR at large distances, which lead to a small
difference of tails between the coarse-grained and the reference
radial distribution functions, and, as a consequence, to a much
higher pressure of the coarse-grained system and a significantly
different coarse-grained potential. In contrast, IBI and FM work
well with system sizes of the order of two radial distribution
function cutoff lengths.

To illustrate this point, we prepared simulation boxes of three
different sizes, with 1000, 2000, and 8000 methanol molecules
(box size of 4.09, 5.15308, and 8.18 nm and simulation times
of 3, 2, and 1 ns, respectively). The IMC iterative procedure
was repeated until the potentials converged, and these are shown
in Figure 3c. One can see that the potentials significantly differ
from each other. These differences lead to small deviations in

the tail of the radial distribution function, which, however,
vanish in a systematic way for bigger boxes, as illustrated in
Figure 3d where we plot the integral of the difference of the
reference and the current distribution functions.64

To summarize, IMC should be used with care for small
systems. The potential update (or the coarse-grained poten-
tial) must be converged with respect to the simulation box
size. In the case of methanol coarse-graining, a box of size
three times the radial distribution function cutoff was not
enough to achieve the converged potential for IMC, even
though this is sufficient for IBI and FM methods.

4.3. Liquid Propane: From an All- To an United-
Atom Description. So far we have illustrated coarse-graining
of nonbonded degrees of freedom using liquid water and
methanol as examples. Here we show how bonded interactions
can be coarse-grained by deriving a united-atom model (i.e.,
hydrogens embedded into heavier atoms) from an all-atom
model of liquid propane.65 The mapping scheme as well as the
bonded coarse-grained variables (two bonds, b, and one angle,
θ) are shown in the inset of Figure 4. Note that this coarse-
graining scheme has two different bead types: an inner bead,
of type B, with two hydrogens, and two outer beads, of type
A, with three hydrogens. As a result, three types of nonbonded
interactions, UAA, UBB, and UAB must be determined.

As before, atomistic simulations were performed using the
OPLS all-atom force field.44,45 A box of liquid propane was
first equilibrated at 200K and 1 bar in the NPT ensemble for
10 ns, using the Berendsen thermostat and barostat.40 The
equilibrated box of the size 4.96337 × 5.13917 × 4.52386 nm3

was then simulated for 10 ns in the NVT ensemble at 200K
using velocity rescaling.48 No bond constraints were used during
the simulations, and hence, the integration time step was 1 fs.
Snapshots were written every 1 ps.

In the case of iterative methods, the bonded potentials
(bond and angle) were calculated by Boltzmann-inverting
the corresponding distribution functions of a single molecule
in vacuum, according to eq 5. The propane molecule in
vacuum was simulated in an stochastic dynamics run41 for
100 ns with snapshots stored every 2 ps. Nonbonded
potentials were iteratively refined by using IBI with a grid
spacing of 0.01 nm and a cutoff of 1.36 nm (1.38 nm) for
A-A, A-B (B-B) interaction types, respectively. The run
length for each iteration was 50 ps with snapshots written
every 0.5 ps. At every iteration step, only one interaction
type was corrected. When using the FM method, both bonded
and nonbonded potentials were obtained at the same time,
since FM does not require the explicit separation of bonded
and nonbonded interactions.

The obtained potentials are shown in Figure 4a, c, and d.
FM and Boltzmann inversion-derived bond and angle
potentials (Figure 4c and d) perfectly agree with each other.
The nonbonded potentials, shown in Figure 4a, are not
completely identical but have similar shapes and barrier
heights. This, of course, results in a good reproducibility of
the propane liquid structure by the FM-based coarse-grained
potentials, as can bee seen from the radial distribution
functions shown in Figure 4b. Again, as expected, IBI
reproduces the reference radial distribution functions exactly.
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To summarize, the united-atom model of liquid propane
is an ideal example of coarse-graining where the structure-
and force-based methods result in similar bonded and
nonbonded interaction potentials. As we will see later, this
is due to: (i) the completeness of the basis set used to
construct the coarse-grained force field; and (ii) independence
of bond and angular degrees of freedom. The latter can be
understood with the help of a histogram showing the
correlation of b and θ, depicted in the inset of Figure 4c.

In the next section, we will look at coarse-graining of a
single molecule of hexane, for which this is not the case.

4.4. Angular Potential of a Hexane Molecule. The final
example we would like to discuss here is the angular potential
of a hexane coarse-grained into a three-bead chain, with two
carbon atoms per bead (see the inset in Figure 5a). Atomistic
simulations of a single hexane molecule in vacuum were
performed using an all-atom OPLS force field and a
stochastic dynamics integrator.41 The run length was 1000
ns, and the snapshots were stored every 2 ps.

The coarse-grained angular potential was again obtained
by Boltzmann-inverting the angular distribution function or
by using the FM method (we used blocks of 50000 frames
each, spline grid of 0.05 nm, and sampling in the θ ∈
[1.6, 3.14] interval). Both coarse-grained potentials are shown
in Figure 5a. The corresponding distribution functions,
together with the reference function obtained from the
atomistic simulations, are shown in Figure 5b.

It is obvious that the distribution, which corresponds to
simple Boltzmann inversion, is practically identical to the
reference distribution, while the FM-based distribution
samples small angles much more often, which is a direct
consequence of a very deep local minimum in the angular
potential at these angles. It is easy to understand why FM
fails to predict the relative height of this minimum. On a
coarse-grained level, the change of the angle from large to
small values corresponds to the reorientation of the dihedral
angles at the atomistic level. This reorientation results in
instantaneous forces, f1, f2, and f3, on the beads which have

Figure 4. Propane: (a) Nonbonded interaction potentials UAA, UBB, and UAB obtained with IBI and FM methods. For clarity, FM
potentials are offset along the y-axis. (b) Corresponding radial distribution functions plotted together with the atomistic radial
distribution function. (c) Bond potential obtained for a single molecule in vacuum by Boltzmann-inverting the corresponding
distribution function, using FM for a single propane molecule in vacuum and using force matching for liquid propane. (d) Angular
coarse-grained potentials. The inset of (c) shows the correlations of b and θ. The inset of (d) shows all-atom and coarse-grained
representations of a propane molecule, bead types, and coarse-grained bonded degrees of freedom (bond b and angle θ).
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an out of plane component, where the plane is defined by
the centers of the beads (see also the inset of Figure 5a).
The coarse-grained potential, however, has only an angular
term, Uθ, and can only capture forces which lie in the plane
in which the angle θ is defined. Hence, only the projections
of the forces on this plane are used in FM, and this clearly
leads to underestimation of the position of the second
minimum, since the work conducted by the out-of-plane
forces is completely ignored.66

Additionally, this mapping scheme does not have inde-
pendent variables, e.g., bond and angle degrees of freedom
are coupled, as can be seen from the Ramachandran plot
shown in the inset of Figure 5b. This means that, even though
Boltzmann inversion reproduces correct distributions, sam-
pling of the configurational space is incorrect because of the
lack of cross-correlation terms in the coarse-grained potential.

This example clearly shows that coarse-graining shall be
used with understanding and caution, the methods should
be cross-checked with respect to each other as well as with
respect to the reference system.

5. Conclusions

To conclude, we have presented a flexible toolkit for
developing and testing coarse-graining methods. Three of
them, namely iterative Boltzmann inversion, inverse Monte
Carlo, and force matching, have been implemented. With
the help of the developed toolkit, we have coarse-grained
liquid water, methanol, and propane and a single molecule
of hexane. We have also illustrated several advantages as
well as shortcomings of the implemented methods. For
example, inverse Monte Carlo has an update function which
is more efficient than that of the iterative Boltzmann
inversion method. On the other hand, inverse Monte Carlo
is very sensitive to the system size and the statistical
averaging. We have also discussed problems one might
encounter when using force matching due to incompleteness

of the basis set used to represent the coarse-grained potential
energy surface. It should always be kept in mind that the
coarse-grained systems are physically different to the refer-
ence systems and that the coarse-graining methods cannot
be used as a black box and require thorough cross-checking.

We shall also mention that the toolkit has an interface to
the fast molecular orbital overlap calculations library and
kinetic Monte Carlo code. Combined, these three packages
have already been used to study self-assembly and charge
transport in organic semiconductors.49,50

The source code of VOTCA is available on request and
will soon be released under a public license.
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Appendix

A. Force Matching Using Cubic Splines. Implementa-
tions of force matching using different basis functions (linear
splines, cubic splines, and step functions) and different
methods for solving the least-squares problem (QR decom-
position, singular value decomposition, iterative techniques,
and normal matrix approach) are discussed in detail in ref
45.

Here, we outline the implementation using cubic splines
as basis functions, QR-decomposition for solving the least-
squares problem, and block averaging to sample large
trajectories.

Figure 5. Hexane: (a) Coarse-grained angular potentials obtained using Boltzmann inversion (no iterations) and using FM for
a single hexane molecule in vacuum. The inset of (a) shows the hexane molecule and its coarse-grained representation. Arrows
indicate the directions of the forces on three beads for a specific snapshot. (b) Probability density (probability distribution normalized
by the interval) obtained from the atomistic run as well as from the runs using coarse-grained angular potentials. The inset of
(b) shows the correlation of b and θ.
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In our implementation the force fγi
({rk}) acting on bead i

due to an interaction γi with the potential Uγi
can be written as

where κ ) r, b, θ, and � denotes the type of interaction and
∇i is the gradient with respect to the coordinates ri of bead i.
The variable κ can label nonbonded interactions, bonds, angles,
or dihedral angles, which are given by the distance between
the two beads, the bond length, and the angle, which depends
on three beads or on the dihedral angle defined using four beads,
respectively. Now, the total force f i

cg, acting on coarse-grained
bead i, can be expressed in terms of the coarse-grained
interactions, and eq 16 can be rewritten as

where γi enumerates all interactions acting on bead i.
f(κ) is interpolated using cubic splines connecting a set of

points {κk}:

where {fk}and {f k
″} are tabulations of f(κ) and its second

derivative on the grid {κk}, the parameters {fk} and {f k
″} are

obtained from the fit, κ ∈ [κn, κn+1], and the coefficients An,
Bn, Cn, and Dn have the following form:

where hn ) κn+1 - κn.
An additional requirement on the spline coefficients is the

continuity of the first derivatives:

If the total number of grid points is N + 1 (n ) 0, 1, ...,
N), then these conditions are specified for the points n ) 0,
1, ..., N - 1. For nonperiodic potentials, the end points are
treated using normal boundary conditions, i.e., f 0

″ ) 0 and
f N

″ ) 0.
Due to the spline fitting, eq 20 simplifies to a set of linear

equations with respect to the fitting parameters fn and fn″. The

complete set of equations to solve, therefore, consists of eq 20
and constraints, eq 23. Strictly speaking, this set of equations
cannot be solved in a least-squares sense using simple QR
decomposition. The reason is that the constraints shall be
satisfied exactly to ensure the continuity of the first derivative
of the potential, which is not the case if they are treated in a
least-squares sense. To solve the problem, one, in principle, has
to use a constrained least-squares solver.51 From a practical point
of view, however, it is simpler to treat the constraints in a least-
squares sense for each block. This will only lead to a piecewise
smooth potential, but the smoothness can be “recovered” by
averaging over the blocks.
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(46) Nosé, S. Mol. Phys. 1984, 52, 255–268.

(47) Hoover, W. G. Phys. ReV. A: At., Mol., Opt. Phys. 1985,
31, 1695.

(48) Bussi, G.; Donadio, D.; Parrinello, M. J. Chem. Phys. 2007,
126, 014101.

(49) Kirkpatrick, J.; Marcon, V.; Nelson, J.; Kremer, K.; Andrienko,
D. Phys. ReV. Lett. 2007, 98, 227402.

(50) Feng, X.; Marcon, V.; Pisula, W.; Hansen, M.; Kirkpatrick,
J.; Grozema, F.; Andrienko, D.; Kremer, K.; Müllen, K. Nat.
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dynamic properties of the corresponding substances. In our
case coarse-grained potentials are tabulated functions of
coarse-grained variables and only the mapping (hydrogens
embedded into heavier atoms) is similar to that of the united
atom force-fields.
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Abstract: A theoretical study of the electronic effects of the inclusion of iron on aluminosilicates
and aluminogermanates nanotubes with imogolite-like structure was carried out by unrestricted
all-electron density functional theory calculations of periodic boundary models. The iron ion was
incorporated to the imogolitic models by an isomorphic substitution of Al by Fe and by the
adsorption of the Fe ion in the inner and outer nanotube structure in the octahedral hydrated
configuration. Additionally, the effects of the Fe concentration in the interval 0.05 e x e 0.1
were analyzed. We observe a drastic reduction of the bandgap value from 4.6 to 2.6 eV and
from 4.2 to 1.0 eV for the silicon and germanium respectively. Finally, in all the models there is
a shift of the Fermi energy toward the gap region as a result of the inclusion of iron electronic
states in the bandgap region.

Introduction

Imogolite denotes mineral nanotubes compounds with chemi-
cal formula (OH)3Al2O3SiOH, which manifests the atomic
layer arrangement going from the exterior to the interior of
the nanotube wall. Mineral imogolite is mostly found in soils
derived from volcanic ash and in weathered pumices and
spodosols.1,2 Imogolite-like aluminosilicates (Si-Imo) and
aluminogermanates (Ge-Imo) have been synthesized by
hydrothermal reactions at relatively low temperature of stirred
diluted solutions of aluminum cloride [AlCl3] as source of
aluminum and tetraethylorthosilicate Si(OC2H5)4 and tetra-
ethylorthogermanate Ge(OC2H5)4 as sources of silicon and
germanium respectively.3-5 Recently renovated efforts have
been carried out toward a more efficient qualitative and
quantitative synthesis procedure of imogolite-like structures.6-8

Natural imogolites and its synthetic nanotube analog struc-
tures ((OH)3Al2O3SiOH, Si-Imo) and ((OH)3Al2O3GeOH,
Ge-Imo) can be applied in the field of chemical sorption
reactivity,9 membrane,10 humidity controlling,11 catalysis
support.12,13

Despite the imogolite-like structures being proposed as
good candidates for catalytic applications, because of proper-
ties such as large surface areas, which vary from 200 m2/g
to above 700 m2/g, depending on absorbate4,10 and the charge
properties in the inner-outer walls, in most cases these

volclays exhibit little or no catalysis because of chemical
stability. Therefore, the incorporation of different metallic
elements on the imogolites surface (Cr, Mo, W, V, Fe, Ni,
Co),14 (Cd, Cu, Pd),9 Ag,15 or active catalytic molecules16

is necessary to improve their catalytic activity. The imogolite-
metal ion dimer can be synthesized by a direct impregnation
on the imogolite surface of the metallic ions being the
imogolite surface the support for the catalytic metal
species.9,13,14,16 An alternative route for the incorporation
of the metallic ions to the imogolite structure/surface is a
direct addition of the metal ions in the gel-like precursors.13,17

Natural imogolite is commonly found in association with
short-range-order materials like allophane and ferrihydrite
in many Andisols, where the iron is one of the most recurrent
contaminants of imogolite and other soil clays.18-20 How-
ever, the phenomenon of the incorporation or segregation
of Fe3+ ions from and toward the nanotube is not completely
answered because the difficulties in the interpretation of the
configuration and atomic environment of the iron ions in the
soil-like materials. On the basis of electron spin resonance
(ESR) spectroscopy McBride et al.17 suggested that little or
no Fe3+ is incorporated to the imogolite structure, observing
the tendency of the Al and the Fe to segregate into imogolite
and ferrihydrite structures respectively. In their studies,
McBride et al. observed the formation of imogolite fibres in
preparations with Al/Fe ratios of larger than 9 and the
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formation of ferrihydrite for Al/Fe ratio of 1 and 0.25,
deducing that the tube formation is inhibited by Al/Fe ratios
of one or less.

On the other hand, Ookawa et al.13 reported the synthesis
of iron containig imogolites with atomic ratio between x )
Fe/(Fe + Al) ) 0.05 and 0.1 (Al/Fe ) 9 and 19, respec-
tively), where the iron ions are added to the fibres by two
routes. In the first route the Fe3+ ions source, FeCl3, are
incorporated directly to aqueous solutions of Na4SiO4 and
AlCl3 ·6H2O, denoting this route as (Imo-Fe). In the second
route the Fe3+ ions are absorbed directly on the imogolite
denoting this process as Imo/Fe. Based on UV-vis and
XANES spectra, Ookawa et al. observed the octahedral
configuration as the preferred disposition of the Fe3+ ions
in both Imo-Fe and Imo/Fe routes. Additionally, based on
k3-weithed EXAFS function and its Fourier transformation
(FT), Ookawa et al. argues the formation of different Fe ion
states between the routes Imo-Fe and Imo/Fe. However, the
electronic effect of the substitution of Al3+ by the Fe3+ in
the imogolite was not totally elucidated. The inclusion of
ferric species like the ferric chloride hexahydride
(FeCl3 ·6H2O) to the imogolite structure is not limited to the
case of adsortion process in the imogolite, it is also being
applied in the preparation of ppy-imogolite (polypyrrole
(ppy)) hybrid materials where the iron acts as an oxidant in
the mechanism of polymerization of (ppy).21

The aim of this work is to study from the point of view
of first principles some of the electronic properties of the
iron ion inclusion into and on the imogolite structure and its
structural analogue germanate, (OH)3Al2O3GeOH, to help
in the electronic interpretation of the experimental phenom-
enology of the incorporation or segregation of Fe3+ ions from
and toward the imogolite nanotube.

Methodology

To simulate the pseudocrystalline one-dimensional structure
of the Fe-imogolite-like fibers, a sequence of models with

periodic boundary conditions were built taking as structural
imogolite the standard model reported by Wada et al.2,22 and
Farmer et al.5 The skeleton of the iron containing imogolite-
like structure is a model with ten gibbsite units, Nu ) 10,
considered as the most likely structure model of natural
imogolite.23 The dimensions of the rectangular simulation
cells along the tubular axial direction (c, Figure 1) were
chosen as 8.78 and 8.8 Å for the silicon and germanium
containing structures respectively on the basis of previous
calculations using the Γ point approximation.24 The trans-
versal cell lengths a and b were chosen to be 40 Å to inhibit
the interaction of the imogolite images along these non axial
directions because the periodic boundary conditions of the
models, Figure 1. In our case the c cell length is slightly
larger than the experimental X-ray diffraction value for
aluminosilicate and the aluminagermanate imogolite-like
structures, that is, 8.51 Å. This overestimation has been
reported as a consequence of the semilocal density functional
approximation in the case of aluminosilicates.25-28

Experimental reports of McBride et al.17 show the fibrous
structure are preserved only in the cases where the ratio Al/
Fe e 9. Therefore; the iron containing in our models was
restricted to values above this critical threshold. As regards
to the iron ions localization, they were located in three
different qualitative imogolite places. The first iron localiza-
tion corresponds to the isomorphic substitution of Al3+ by
Fe3+ ions in the imogolite atomic layer denoted as Al5 in
Figure 2a and b; this configuration plays the role of iron
absorbed on the imogolite structure in a similar way to the
Imo-Fe structure reported by Ookawa et al.13 This kind of
configuration was in this work simulated by four models with
isomorphic substitution of one to four Al3+ atoms by Fe3+

which corresponds to x ) (0.025, 0.05, 0.075, 0.1) with a
general notation M-Imo-Fe, see Table 1 and Supporting
Information.

The two remaining iron configurations corresponds to the
case where the iron atom is adsorbed on the inner or the

Figure 1. (a) Periodic boundary conditions used in the Fe-imogolite calculations. (b) Periodic conditions along the fiber axis, c
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outer the imogolite surfaces producing surface defects in the
standard imogolite model being this kind of configuration
similar to the Ookawa’s Imo/Fe arrangement.13 In the first
Imo/Fe configuration denoted in general as M-Imo/Fe-a, see
Table 1, the iron atom substitutes the element of the group
IV (layer M3 in Figure 2a) in the pore tubular region, being
linked to three oxygen atoms of the O4 layer, Figure 2a.
Because the octahedral disposition is the preferred config-
uration of the Fe3+ ions a hydrated sphere of three water
molecules were added to the iron ion to preserve both the
octahedral iron configuration and the oxidation 3+, Figure
2c.

The second Imo/Fe configuration denoted in general as
M-Imo/Fe-b, see Table 1, corresponds to the adsorption of
irons ion in the outer imogolite surface where the Fe3+ ions
are monolinked to an oxygen of the O6 layer, taking a similar
place to the H7 hydrogen position in the imogolite outer
surface, Figure 2a-2d. The oxidation state 3+ of the iron in
the Imo/Fe-b structures was kept constant by surrounding
the ion by three water molecules and two OH- molecules in
octahedral configuration. In order to analyze the iron
concentration effects on the electronic properties of the
silicon and germanium imogolite-like structures, a sequence
of 4 models with similar structural characteristics to the Imo-
Fe, Imo/Fe-a and Imo/Fe-b were built varying the number
of iron ions in the model from 1 to 4 (0.05 e x e 0.1; x )
Fe/(Fe + Al)) for each case. Table 1 and the Supporting
Information display the notation of the 12 model structural
variations considered in this work where Al/Fe ratio was kept
above the experimental fibrous morphology and non-iron-
aggregation threshold of 9 (Al/Fe ) 9; x ) 0.1) reported by
McBride et al.17

The iron containing imogolite models were structural
optimized carrying out geometry optimizations of the radial
nanotube dimension keeping the cell lengths a, b, and c
constant during the geometry optimization. The non-
dependence of the c length with respect to the iron content
arises because the iron concentration in the cell is small with
respect to the entire structure content; however, this restric-
tion should be considered just as a first approach. The ab
initio optimizations were carried out using unrestricted all
electron DFT calculations as is implemented in the DMol3

code29 with Double Numerical basis set (DN),30 together with
the Perdew-Wang exchange correlation functional, GGA-
PW91.31 The geometries were optimized until the maximum
force and displacement on the system were 0.004 Ha/Å and
0.005 Å, respectively, to ensure a near ground-state config-
uration. Because of the high level computational cost of the
unrestricted calculations, all the ab initio calculations were
performed considering only the Γ point in the reciprocal
space, which provides a good qualitative description of the
problem as it is shown and validated in previous work.24

Electronic Structure Analysis

The electronic effects of the addition of iron ions into the
imogolite systems are mainly displayed in the bandgap region
giving rise to electronic contamination states.Figure 3a-d
shows the electronic density of states (DOS), varying the
iron content x ) Fe/(Fe + Al), of the Si-Imo-Fe (isomorphic
Al3+ substituted by Fe3+) models compared with the DOS
of the non iron content imogolite-like system. In the curves
of Figure 3a-d the DOS was split such that energy of the
maximum of the valence bands of both systems coincides.
The contamination of the bandgap by the Fe produces
electronic states localized mainly in three bandgap regions:
(a) in the top of the valence band, (b) in the bottom of the
conduction band, and (c) in the middle of the bandgap, see
insets in Figure 3a-d.

In the case of the silicon containing imogolite-like
structures (M ) Si in Table 1), the small concentration of
iron in the models does not alter significantly the shape of

Figure 2. (a) Transversal section of the imogolite structure
where is indicated the notation of the atomic layers in the
structure. (b) Schematic representation of octahedral isomor-
phic substitution of Al+3 for Fe+3. (c-d) Adsorption of octa-
hedral Fe+3 ions on the inner and outer imogolite surface. In
all the cases the M symbol denotes both Si or Ge containing
structures.

Table 1. Notation Use in the Fe-Containing Aluminosilicate
and Aluminogermanate Nanotubes Analyzed in This Worka

compound short name x Al/Fe class

H80O140Al39Fe1M20 M-Imo-Fe-1 0.025 39.0 subst
H80O140Al38Fe2M20 M-Imo-Fe-2 0.050 10.0 subst
H80O140Al37Fe3M20 M-Imo-Fe-3 0.075 12.3 subst
H80O140Al36Fe4M20 M-Imo-Fe-4 0.100 9.0 subst
H85O142Al40Fe1M19 M-Imo/Fe-a-1 0.024 40.0 inner/abs
H90O144Al40Fe2M18 M-Imo/Fe-a-2 0.048 20.0 inner/abs
H95O146Al40Fe3M17 M-Imo/Fe-a-3 0.070 13.3 inner/abs
H100O148Al40Fe4M16 M-Imo/Fe-a-4 0.090 10.0 inner/abs
H87O145Al40Fe1M20 M-Imo/Fe-b-1 0.024 40.0 outer/abs
H94O150Al40Fe2M20 M-Imo/Fe-b-2 0.048 20.0 outer/abs
H101O155Al40Fe3M20 M-Imo/Fe-b-3 0.070 13.3 outer/abs
H108O160Al40Fe4M20 M-Imo/Fe-b-4 0.090 10.0 outer/abs

a The M symbol denotes the Si or Ge aluminosilicate nanotube
variation. On the other hand, the notation subst, inner/abs and
outer/abs corresponds with the Fe+3 in the imogolite-like structure
as is shown in Figure 2a and Figures S1 and S2 of the supporting
information.
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the valence band outside the bandgap region; however, the
defects generated by the iron on the imogolite-like structures
produce a shift of the largest occupied state, Fermi energy,
with respect to the uncontaminated case, indicated as a
dashed line in Figure 3a-d. The Fermi energy shift and the
energy localization of defect states in the bandgap region
are almost independent of the of the iron content in the
models, generating a reduction of the bandgap value from
∼4.6 eV in the case of non-iron-containing model24 to 1.49,
1.69, 1.67, and 1.97 eV for the isomorphic substituted Si-
Imo-Fe-1, Si-Imo-Fe-2, Si-Imo-Fe-3, and Si-Imo-Fe-4 mod-
els, respectively. In the case of the sequence of silicon
imogolite-like models denoted as (Si/Imo-Fe-a and Si/Imo-
Fe-b), the localization of the defect electronic states in the
DOS displays similar characteristics and bandgap values to
those analyzed in the Si-Imo-Fe models, see Figures S3-S4
in the Supporting Information.

On the other hand, the presence of germanium on the
imogolite-like models, M ) Ge in Table 1, seems not to
affect drastically the behavior of the electronic states
observed for the case of silicon imogolite models. Figure
4a-d displays the DOS for the Ge/Imo-Fe-b models where,
like in the case of Si-Imo-Fe models, the DOS curves of the
non-iron-containing and iron-containing Ge/Imo-Fe-b models
were split in such away that the energy of the maximum of
the valence bands of both systems coincide. The insets of
Figure 4a-d show the difference in the curves between the
non-iron-containing and iron-containing Ge/Imo-Fe-b models
in the bandgap region observing a shift of the Fermi energy
together with the presence of defect states in the top, middle,
and bottom of the bandgap region like in the case of the
silicon imogolite-like models. The bandgap values on
germanium containing imogolite-like structures, the DOS,

display a larger iron dependence than in the silicon case
having values of 2.6, 1.00, 0.94, and 0.9 eV for the Ge/Imo-
Fe-b-1, Ge/Imo-Fe-b-2, Ge/Imo-Fe-b-3, and Ge/Imo-Fe-b-4
models, respectively. Similar iron concentration bandgap
dependence is observed for the systems Ge-Imo-Fe and Ge-
Imo/Fe, see Figures (S5-S6) in the Supporting Information.

With the aim of discerning the origin of the defect states in
the DOS curves, an analysis of the correlation between the
electronic states within the DOS and the geometric radial
position in the nanotube structure through the local density of
states (LDOS) was carried out in the Si/Imo-Fe-b-4 and Ge/
Imo-Fe-a-4 models whose results are displayed in Figures 5
and 6. The top of the valence band, in both Si/Imo-Fe-b-4 and
Ge/Imo-Fe-a-4 models, has the main contributions from the
oxygen layers of the imogolite-like structure (O2, O4, O6). These
oxygen weights are similar to previous works in non-iron-
containing aluminosilicate and aluminogermanate nanotube
models.24 However, in iron content cases there are an additional
contribution coming from the hydratation sphere of the iron
ion states, see Figures 5a-c, 6a-c, and S7-S12 in the
Supporting Information. On the other hand, the main contribu-
tions to the valence band shoulder generated by the shift of the
Fermi energy come from states linked to the iron, hydration,
and O6 atoms in the case of the Si/Imo-Fe-b-4 model, whereas
in almost all the analyzed cases the main contributions to the
shoulder of the top valence band are connected to the iron ion
and to the O4 imogolite-like layer, Figures 5, 6, and S7-S12
in the Supporting Information.

In all the cases, the middle bandgap electronic states are
almost exclusively associated to the iron ions, whose
importance grows when the iron content is increased. An
example of these contributions is the composition of the DOS
peak at the top of the conduction bandgap region which has

Figure 3. (a-d) Total DOS of the Fe isomorphic substituted imogolite structures: Si-Imo-Fe. The DOS of the iron containing
models were compared with DOS of the non-contenting models, green dashed line. The insets in a-d show the bandgap region
where the new defect states were yellow highlighted. Finally, the dashed line indicates the Fermi energy for the both Fe containing
and non containing imogolite-like models.
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a high contribution of Fe states with smaller contributions
coming from the hydratation iron sphere. Additional con-
tributions to this peak come from the H7 and O6 in the case
of Si/Imo-Fe-b-4 model, whereas for the Ge/Imo-Fe-a-4
model the H7, O6 and Ge3 atomic layers also contribute to
this peak. Similar aspects in the DOS partial contributions
are shown by the rest structures, Figures S5-S12 in the
Supporting Information. Because of the previous analysis,
it is concluded that the inclusion of iron in the imogolite-

like structure adds new electronic states to the DOS associ-
ated to the Fe ion and their hydratation sphere which are
overlapped and shifted from the original imogolite states.

The distribution of the electronic states around the Fermi
energy displayed in Figures 5, 6, and S7-12 in the Supporting
Information clearly shows a high localization around the ion
atoms. This localization phenomenon is also present when the
spin density of states (spin-DOS) are analyzed, Figures 7 and
S13-18 in the Supporting Information. In particular, Figure

Figure 4. (a-d) Total DOS of the Fe ion adsorbed on the outer imogolite-like surface models: Ge-Imo/Fe-b. The DOS of the
iron-containing models were compared with DOS of the non-iron-containin models, green dashed line. The insets in a-d shows
the bandgap region where the new defect states were yellow highlighted. Finally, the dashed line indicates the Fermi energy for
the both Fe containing and non containing imogolite-like models.

Figure 5. (a) Overview of the local density of states contribution to the total DOS for the Si-Imo/Fe-b-4, the notation indicates
the atomic layer whereas hydra is the notation for the hydratation sphere of Fe. (b) Zoom of the oxygen contribution to DOS. (c)
Zoom to the hydrogen and hydratation contribution to DOS. (d) Zoom of the Si3, Al5, and Fe to the DOS.
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7a depicts the spin-DOS for the case Ge-Imo-Fe1 where the R
and � spin-DOS shows similar shape and weights outside the
band gap region. The spin difference between the R and � DOS
displays, clearly, the localization of the total spin densities
around the bandgap region, showing additionally an oscillatory
behavior of the total spin-DOS in this region, Figure 7b. A closer
analysis of the nature of the spin-DOS displays that the main
contribution to the spin-DOS in the bandgap region is linked
to iron ions incorporated in the structures being this phenomena
common to all the analyzed structures, as is depicted in Figures
7c-d and S13-S18 in the Supporting Information.

As regards the final spin of the configurations, the
imogolite-like structures displays in most cases a doublet
configuration (spin ) 1/2), when the number of iron ions is
even, and singlet spin configuration (spin ) 0) when number
of iron ions is odd. The exceptions to this behavior are the
following cases: Si-Imo/Fe-a-2, Si-Imo-Fe-4, Si-Imo/Fe-b-
4,Ge-Imo-Fe-2, Si-Imo/Fe-b-4, and Si-Imo/Fe-b-4 with triplet
spin configuration (s ) 1).

The localization of the Fermi energy orbitals around the
iron atoms is ratified by the geometric distribution of the
HOMO and LUMO orbitals. In particular, Figure 8 shows

Figure 6. (a) Overview of the local density of states contribution to the total DOS for the Ge-Imo/Fe-a-4, the notation indicates
the atomic layer whereas hydra is the notation for the hydratation sphere of Fe. (b) Zoom of the oxygen contribution to DOS. (c)
Zoom to the hydrogen and hydratation contribution to DOS. (d) Zoom of the Ge3, Al5 and Fe to the DOS.

Figure 7. Spin-DOS of the system Ge-Imo-Fe-1. (a) R and � spin DOS contribution to Total DOS (b) Relative position and
weight of the total spin DOS with respect to the Total DOS respect to the Total DOS. (c) Fe PDOS and its relative R and � spin
PDOS. (d) Relative positions and weights of the Fe-PDOS, Fe Total spin, and the total spin of the model.
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the spatial distribution of the isosurface with a value 0.01
for the Si/Imo-Fe-b-3 model where the localization of the
HOMO and LUMO orbitals, around the position of two of
the Fe atoms, is displayed. Note that the HOMO orbital is
localized only in one of the three Fe atoms whereas the
LUMO orbital is localized in a different Fe atom. The
localized orbital linked to the third Fe ion is energetically
situated in the neighborhood of the Fermi energy.

Reach and Limitations of the Bandgap
Calculation

With the aim test the reach and limitations of the GGA-PW91
the band gap values in the case of Fe-aluminosilicate and Fe-
aluminogermanate systems with respect to other DFT-functional

approaches, a sequence of calculations were carried out using
3 types of functionals: GGA-PW91,31 the revised Perdew-
Burke-Ernzerhof GGA-RPBE,32 and the hybrid B3LYP.33,34

As test system, we have chosen a set of iron-containing flat
imogolite-like structures with cell dimensions a ) 8.46 Å, b )
9.8 Å, which corresponds to two gibbsite-like units. To ensure
and empty atom gap between the imogolite-like layers the c
length was selected as 20 Å. The iron ions were placed in
configurations similar to those used on the tubular configuration,
subst, inner/abs, and outer/abs, as is depicted in Figures 9 and
S19-S23 in the Supporting Information. Like in the case of
tubular structures, the electronic DOS calculations were carried
out using the Γ point approximation and spin-unrestricted
methodology. For both GGA-PW91 and GGA-RPBE, the
calculations were carried out using the orbital localized code
DMol3 with all electron approach where the iron imogolite-
like surface was geometry optimized using the GGA-PW91 and
the GGA-RPBE functionals respectively. On the other hand the
hybrid-B3LYP the DOS calculations were carried out using the
pseudopotential plane wave CASTEP code.35 where the iron
ion-imogolite-like system was geometry optimized using the
GGA-PW91.

The results of the DOS calculations in flat iron-containing
models show, in general, similar DOS shape and bandgap
values independently of the DFT approach. In the case of
the hybrid-B3LYP functional the middle bandgap states have
a lower height with respect to the DOS than the GGA-PW91
and GGA-RPBE functionals; however, the middle bandgap
states that define the bandgap value are still present in the
hybrid-B3LYP DOS calculations with gap values comparable
to those found in the flat and tubular imogolite-like structures.

Figure 8. (a) Iso-surface with value 0.01 of the HOMO orbital
for the structure Si-Imo/Fe-b-3. (b) Iso-surface with value 0.01
of the LUMO orbital for the structure Si/Imo-Fe-b-3. Clearly
the both orbitals are localized around the Fe ion.

Figure 9. (a) DOS of silicon containing flat imogolite structure using the functionals PW91, RPBE, and B3LYP. This system is
similar to the configurations outer/abs: H87O145Al40Fe1Si20, H94O150Al40Fe2Si20, H101O155Al40Fe3Si20, and H108O160Al40Fe4Si20 of
the Table 1. (b) Zoom of the DOS depicted where is displayed the middle bandgap states.
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This phenomenon is most clearly displayed by the subst. and
outer/abs configurations, Figures 9 and S19-S21 in the
Supporting Information. On the other hand the flat inner/
abs configurations shows larger discrepancies between the
GGA-PW91 and GGA-RPBE and the hybrid B3LYP cal-
culations in the bandgap region due to the larger water versus
Si-OH and Ge-OH interaction in this configurations,
Figures S22-S23 in the Supporting Information. On the basis
of these calculations, some qualitative and quantitative
aspects of the DOS of iron containing imogolite-like systems
and the order or magnitude of the bandgap found in the
tubular imogolite-like structures are validated, at least in
terms of the DFT.

Conclusions

The electronic properties of isomorphic substituted and adsorbed
iron aluminosilicate and aluminogermanate nanotube structures
were analyzed based on all electrons unrestricted ab initio
calculations. The optimized nanotube models have iron content
in the interval 0.05e xe 0.1 and varying iron ion positions in
three different octhahedral configurations: inner, outer imogolite
surface and isomorphic substituted in the Al gibbsite layer. In
all the configurations and content cases the electronic Fe-
imogolite-like silicate/gemanate DOS displays large changes
because of the contamination by Fe electronic states of the
bandgap region, generating the reduction of the gap values from
∼4.7 to [2.0-1.4 eV] and from ∼4.2 to [2.6-1.0 eV] for the
Fe-silicon and Fe-germanium imogolite-like nanotubes. The Fe
inclusion into the imogolite-like structures produces a shift of
the Fermi energy and the overlapping of Fe electronic states to
the original imogolite-like states at the top, the middle, and the
bottom of the gap region.

Supporting Information Available: Figures showing
snapshots of optimized iron-containing aluminosilicates and
aluminogermanate, DOS of the imogolite-iron dimer, adsorbed
Fe-imogolite over the inner imogolite surface, isomorphic
substituted Al by Fe in germanium-containing nanotube, ad-
sorbed imogolite over the inner imogolite surface, germanium-
containing flat imogolite structure, andsilicon-containing flat
imogolite structure, sequence of total DOS and PDOS, and
sequence of spin-DOS. This material is available free of charge
via the Internet at http://pubs.acs.org.
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Abstract: A new mixed resolution method is developed for modeling molecular interactions
that employs a distance-dependent coupling of atomistic and coarse-grained force fields. In the
mixed resolution interaction (MRI) method, detailed atomistic structure is maintained over the
whole system. However, the atomistic force field is used for close interparticle separations (called
the atomistic zone), while at large separations the coarse-grained forces are “unfolded” into
atomistic interactions in a way that reduces the cost of the simulation compared to standard
long-range approximations or cutoff schemes. Several variations of the unfolding scheme are
described. The method is applied to develop MRI models of bulk TIP3P water, based on one-
site multiscale coarse-grained (MS-CG) water potentials located at the molecular centers of
either mass or geometry. With a sufficiently large atomistic zone (>0.7 nm), the MRI models
provide excellent simulations of the bulk water phase. MRI modeling is further illustrated for
liquid methanol with both one- and two-site coarse graining. The MRI water models are then
used to simulate aqueous solutions, where the solutes are treated at the atomistic level. It is
shown that the MRI treatment significantly alters solute association dynamics if it relies on the
MS-CG force fields obtained solely from the bulk phase. Possible modifications of the MRI
procedure to improve the transferability of water potentials to heterogeneous systems are,
therefore, discussed. The best result is obtained if water molecules within a preselected cutoff
distance from the solute are described using only atomistic potentials. As a final example, the
MRI method is applied to model a solvated phospholipid bilayer.

1. Introduction
The structure and dynamics of complex condensed-phase
systems are often influenced by multiscale phenomena. It is
possible to adequately describe the behavior of such systems
on mesoscopic or macroscopic scales, although such models
are necessarily less complete than those described by the
full set of atomistic variables and the laws describing their
interactions. The limited success and transferability of many
empirical models, tailored to study condensed-phase systems
on particular scales, testifies to this fact. The first and most
widely used strategy for empirical modeling, which may be
recognized as a top-down approach, is based on extracting
dynamic variables and interactions directly from the system’s

mesoscopic properties. In contrast, the more recent bottom-
up philosophy in condensed-phase modeling assumes that a
hierarchy of relevant scales exists in condensed-phase
systems, beginning with the molecular scale. The bottom-
up approach first identifies the most important degrees-of-
freedom on mesoscopic scales and then projects the atomistic
coordinates and interactions onto the phase space spanned
by the relevant coordinates. Such a strategy holds certain
advantages over top-down strategies since explicit molecular-
scale force information is systematically propagated upward
in scale to the mesoscopic level. However, it is also
technically more complex and, in some cases, may become
infeasible because atomistic simulations are computationally
expensive.

A simpler but potentially less accurate approach than the
fully atomistic description is particle-based coarse graining,
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where groups of atoms are replaced by single interaction
sites.1 Particle-based coarse-grained (CG) simulations have
become popular because they provide controllable, quasi-
atomistic resolution and require significantly less computa-
tional cost than that of a fully atomistic treatment. While
most particle-based CG methods rely on underlying atomistic
structures to partition the system into interaction centers,
strategies for coarse graining the interactions themselves have
mainly been developed in the top-down spirit using ther-
modynamic information.2-6 However, in recent years an
efficient and systematic bottom-up strategy for constructing
effective pairwise CG interactions has been developed that
provides a mapping of the molecular interactions onto a
pairwise decomposable many-body potential of mean force
(PMF) in the CG coordinate space by matching the effective
CG forces to the forces along fully atomistic simulations.7-15

The method is called multiscale coarse graining (MS-CG)
and has been applied to a variety of complex condensed-
phase and biomolecular systems.1

In many instances, however, CG models are not suf-
ficiently accurate so that atomistic or dynamics become
necessary for some key part of the system. This fact has
prompted the development of mixed resolution methods
where the system is partitioned into different domains. In
quantum mechanics/molecular mechanics (QM/MM) ap-
proaches, for example, a small subset of the system is treated
quantum mechanically, while the rest is treated by a classical
empirical potential. A common simplification in QM/MM,
and in many mixed-resolution methods, is the prevention of
particle exchange between domains. Such a restriction clearly
limits the scope of their applications, for example by
excluding systems with strong fluctuations and diffusive
properties. Realistic modeling of particle flow across bound-
aries in a mixed-resolution representation requires the ability
to adjust a particle’s resolution as it moves across the
predefined resolution boundaries. Several adaptive resolution
(AdRes) schemes have recently emerged in response. The
so-called “hybrid particle” in such schemes is represented
by a weighted superposition of its various representations
and interactions.1,16-22 (The particle adopts its hybrid form
only inside transition regions, which separate regions of
different resolution.) The major feature distinguishing the
various AdRes schemes is how interactions between domains
of different resolutions are coupled in the transition region.
In the potential-based AdRes method, effective forces are
determined from a smoothly varying potential across the
resolution transition region. In the force-based scheme, the
reverse approach is adopted.

The present paper describes a significantly different
strategy to couple CG and atomistic descriptions, which we
call mixed resolution interaction (MRI) modeling. The
general idea is to implement different resolution models
depending only on the radial distance between the interacting
particles. MRI modeling is based on the intuitively obvious
fact that the interactions between sufficiently distant separated
particles, belonging to the so-called “CG distance zone”,
should be well described by a lower resolution CG force
field. As the particles move closer together, the CG force
field should be smoothly replaced by a fully resolved

atomistic force calculation. The overall MRI approach
assumes that the CG forces can be mapped (or “unfolded”)
onto atomistic forces as two particles move out of the at-
omistic distance zone. It should be stressed that in the MRI
method both resolutions (atomistic and CG) “live” throughout
the entire simulation system. There are no resolution bound-
aries in real space.

The MRI force unfolding algorithm addresses the question
of how a CG force, normally applied to the center-of-mass
of an atomistic group (or more generally to the location of
a CG site), should be distributed over individual atoms of
the group. The solution to this problem is not unique, a fact
that introduces some (unavoidable) ambiguity into the MRI
method. The nonuniqueness of the unfolding scheme is
associated with the inevitable loss of information incurred
upon the coarse graining of a system.1 However, the
advantage of MRI modeling over the alternative of a pure
CG simulation implemented at all length scales is that the
MRI simulation limits the loss of information to primarily
the long-range interactions. Fully atomistic resolution in the
structure is preserved at short range, and these atomistic
short-range interactions are maintained in every part of the
system, also in contrast to the AdRes schemes.

In practice, the computational efficiency of the MRI
method is defined by two factors: the size of the atomistic
zone and the simplicity of the force unfolding algorithm.
The atomistic zone should encompass all parts of the free
energy surface that are “molecularly rough”. Conversely, the
atomistic interactions may be safely replaced by CG interac-
tions in regions where the characteristic length scale of
variations in the effective free energy surface (many-body
PMF) begins to exceed the linear dimension of the CG
groups. One possible criterion for the latter might be gleaned
from the level of agreement between MS-CG potentials
developed for two different choices of CG sites within the
groups (e.g., center-of-mass vs geometrical center). Agree-
ment between the two MS-CG effective potentials at some
interparticle distance would indicate that the CG forces could
be unfolded into atomistic ones at that distance in the MRI
scheme. Note that because MRI potentials are pairwise, MRI
modeling can be combined with accurate atomistic interac-
tions in a selected subsystem, in principle allowing for an
efficient way to simulate heterogeneous systems.

The following sections of this article are structured as
follows. Section 2 begins with a summary of the MS-CG
method and then presents an overview of the MRI method.
In Section 3.1, the MRI one-site water model is described,
and MRI simulation of TIP3P water in the bulk phase is
presented. In Section 3.2, the same is done for liquid
methanol. In Section 4, the MRI TIP3P water potential’s
transferability to heterogeneous systems is analyzed by
simulating an aqueous sodium ion solution. Also in Section
4, the MRI method is applied to simulate a phospholipid
bilayer. The paper closes with conclusions in Section 5.

2. Mixed Resolution Interaction Method

In essence, the MRI approach is a distance-dependent
coupling of the atomistic and CG force fields, which must
be chosen to be as consistent as possible. The best result can
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be achieved if the CG interactions represent an ensemble
average of the exact atomistic interactions projected upon the
coarse-grained degrees-of-freedom. In this case, the configu-
rationally averaged atomistic and CG interactions between
distant molecules are close to identical. The MS-CG method,
which has been extensively described elsewhere,1,7,8,13-15

derives the effective CG interactions through a statistical
mechanically consistent projection of the atomistic forces onto
the CG space. It, thus, satisfies the above requirement.

2.1. MS-CG Interactions. Here we present a brief outline
of the MS-CG method relevant to MRI modeling.14,15 In the
MS-CG approach, coarse graining of an n-particle Cartesian
phase space (rn, pn) with a Hamiltonian h(rn, pn) corresponds
to mapping the coordinates of the n particles into N CG
groups. This process is represented as a canonical coordinate
transformation to a new phase space (RN, PN). The latter is
spanned by the intragroup locations of the N atomic
groupings:

where sI is the number of atoms in the Ith grouping, and the
coefficients cIi satisfy:

Equation 2 ensures that the (RN, PN) coordinates are
canonical. RI and PI will be the position and the momentum
of the center-of-mass (CM) of the Ith group if cIi ) mIi/MI,
where mIi is the mass of the ith atom and MI ) ∑i ) 1,sI

mIi is
the total mass of group I. Alternatively, the choice cIi ) 1/sI

is equivalent to the assumption that all atoms in the group
have equal mass. In this latter representation, RI is the
geometrical center of the CG group.

The effective pairwise interaction Hamiltonian, which
describes the canonical distribution in the CG phase space
(RN, PN), is constructed to represent the all-coordinate exact
CG many-body potential of mean force U(RN). This can be
achieved by introducing a pairwise approximation to U(RN)
into the CG Hamiltonian. A pairwise form ensures that the
CG effective potential term can be expressed as the integral
of a pairwise and, thus, the conservative approximate CG
force field as

whose free parameters Ω are adjusted to approximate (in
the least-squares sense) the all-coordinate CG many-body
potential of mean force field:1,15

In eq 3, RIJ is the distance between CG groups I and J
located at RI and RJ, respectively, and nIJ ) RIJ/RIJ is the

unit vector pointing from J to I. The pairwise MS-CG force
field gIJ(RIJ, Ω) ) g(RIJ, Ω)nIJ is, thus, central and radially
symmetric. As shown elsewhere,14,15 if GRI

(RN, Ω) [or the
gIJ(RIJ, Ω)] is linear in Ω (i.e., if it can be expanded into a
set of basis functions whose coefficients are the parameters
Ω), then a least-squares fit to the mean net forces FRI

(RN) is
equivalent to a least-squares fit to their instantaneous magnitudes
FRI

(RN). The latter can be evaluated from an atomistic simula-
tion as ∑i ) 1,sI

fi, where the fi are instantaneous net forces on
individual atoms of the group. The least-squares problem is
thereby reduced to a set of linear equations,8,15 which can be
solved using a block-averaging scheme.7-9 A linear basis set
can be conveniently constructed using piecewise functions, for
example, a spline representation.7-9,15

2.2. MRI-Coupling Atomistic and MS-CG Interac-
tions. This section describes the mixed resolution force-based
scheme employed to couple atomistic and MS-CG interac-
tions. At the same time, it suggests a potential-based scheme,
whose relation to the force-based scheme is similar to that
seen in the AdRes methods.22,23 While the force-based
scheme is generally easier to implement, it does have a
drawback related to the difficulty of defining a potential for
the mixed (coupled) force field.

The location chosen for a CG site within the group is
assumed here to be to as its CM, thus, assuming a proper
distribution of atomic masses. The interval between two CMs
is partitioned into three regions, as shown in Figure 1: the
atomistic zone ∆Ratm; R e Ratm, the transition region ∆Rtr;
Ratm < R e Ratm + ∆tr, and the CG zone ∆RCG; Ratm + ∆tr <
R e Rcut. The distance Ratm is the cutoff for the atomistic
zone, while ∆tr is the width of the transition region. The
distance Rcut, the cutoff for the CG zone, is taken to be equal
to the cutoff used for the MS-CG interactions.15 The purpose
of the transition region is to join smoothly the forces in the
atomistic and CG regions.

The total force acting on the ith atom in the kth CG group
of type R, with the latter two indices grouped as A ) (Rk),
can be written as

RI(r
n) ) ∑

i)1,sI

cIiri (1)

PI(p
n) ) ∑

i)1,sI

pi

∑
i

cIi ) 1 for I ) 1, ...,N (2)

GRI
(RN,Ω) ) ∑

J*I

g(RIJ,Ω)nIJ (3)

FRI
(RN) ) -∇RI

U(RN) (4)

Figure 1. Schematic of the equipartition approach for
evaluating pairwise atomistic contributions given the total MRI
force acting between two CG groups (eqs 6, 9-11).

F iA
MRI(r) ) ∑

j,B

fiA,jB
MRI(r, RAB) (5)
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The summation runs over all groups B ) (�l), B+A, whose
atoms (jB) ) p act on the atom (iA) ) s with nonzero forces
fsp
MRI, given that the atoms s and p are separated by a distance

r and the groups’ CMs are RAB apart. In the force-based
scheme, the force between atoms s and p depends on which
zone the intergroup separation R ) RAB falls into

In eq 6, fsp
atm(r) denotes the fully resolved atomistic force:

where fsr is a short-ranged (e.g., Lennard-Jones) contribution,
and fcoul is the electrostatic (Coulomb) component. The
symbol fsp

MSCG,unf(R) in eq 6 represents a pairwise atomistic
interaction derived from the CG interaction between groups
containing the atoms s and p, in accordance with the
preselected unfolding algorithm for the pairwise CG force
fAB

MSCG ) fR�
MSCG(RAB) (the indices R and � denote kinds of

groups). To make the fsp
MRI(r, R) force continuous everywhere,

a smooth weighting function w(R) is defined in the transition
region with boundary conditions w(Ratm) ) 1, w(Ratm + ∆tr)
) 0. We have adopted here the weighting function of the
form cos2(π(R - Ratm)/2∆tr), which is similar to that used in
ref 16. Such a weighting function implements a particularly
simple way to ensure an interpolation between w ) 0 and w
) 1 that is monotonic, continuous, and differentiable and
has a zero slope at the boundaries of the atomistic and (more
importantly) the coarse-grained regions. Apart from these
requirements the precise functional form is not especially
relevant.

2.3. Unfolding MS-CG Interactions. In unfolding the
MS-CG force fAB

MSCG ) fR�
MSCG(RAB) into atom-atom contribu-

tions fiA,jB
MSCG,unf(RAB), where each contribution represents the

force on atom (iA) due to atom (jB) at distance rij, the
following constraint must first be satisfied:

Of course, eq 8 alone is not enough. Additional assump-
tions regarding the directions and the amplitudes of the
unfolded atomistic forces are required. First we will assume
that:

where {eij
AB} is a preselected set of unit vectors defining the

possible directions of the unfolded forces. Newton’s third
law states that eji

BA )-eij
AB and f jB, iA

MSCG,unf ) f iA, jB
MSCG,unf. The latter

two rules ensure that the Newton’s third law is fulfilled all
the time in the MRI simulation. The most natural choices of
eij

AB point back and forth along the vector rij ) ri - rj

connecting the two atoms. However, such a choice would
require an evaluation of the unique basis vector eij

AB for each

pair of atoms and then inversion of the matrix |(eij
AB × ei′j′

AB)|
to project the CG force fAB

MSCG onto the full basis {eij
AB}. This

approach would be computationally expensive. A simpler
choice is to assume that all vectors in the basis have the
same direction along the radius vector RAB ) RA - RB,
connecting the CMs of the two groups

A rule for how to project the fAB
MSCG force onto the vectors

eAB is still needed, as the latter is not linearly independent.
An “equipartition” rule is probably the simplest choice, which
distributes the MS-CG force equally over all atomic pairs:

where NR and N� are the numbers of atoms in the groups of
type R and �, respectively, and fAB

MSCG is the modulus of fAB
MSCG.

This rule is depicted in Figure 1. Calculating the force
between the two CG groups by eqs 8-11 is, thus, ∼NRN�/2
times faster than evaluating the short-ranged interactions for
each pair (iA, jB).

The simplicity of the equipartition approach comes at a
cost, however. First of all, it ignores the structure of the
groups. For example, if any of the CG group atoms are
charged, then the forces will not be consistent with the partial
charge distribution over the group because interactions in
the CG zone are mostly of an electrostatic origin. Second,
the direction of the fij

MSCG,unf force is always the same no
matter how the groups are mutually oriented. Third, the
unfolded forces can be noncentral, as the RAB and rij vectors
may be not collinear. The noncentrality of unfolded forces
may lead to difficulties in introducing a corresponding
potential energy, as will be discussed shortly.

Let us, thus, consider possible enhancements or alternatives
to the equipartition algorithm, in particular approaches that
better account for atomic partial charges and orientations,
or those that yield central forces. One straightforward
modification addressing the problem of atomic partial charge
dependence would be to select the eij

AB vector, whose sign
(direction) agrees with the product of the respective partial
atomic charges qiqj. This modification to eq 11 leads to the
unfolding rule:

where QR is the net charge of a group of type R. This change
seems well justified in situations where the direction of the
force between atoms at large separations is determined by
the sign of their partial charge product qiqj.

The equipartition approach can also be made to depend
on orientation by redefining the forces in the CG zone. We
write fAB

MSCG(RAB, dA, dB), where dA(B) is a vector representing
the orientation (e.g., dipole moment) of group A(B). To be
consistent with the generic MS-CG force field fR�

MSCG(RAB),
this function has to satisfy the condition <fAB

MSCG(RAB, dA, dB)>d

) fR�
MSCG(RAB). In this context, the brackets represent a

fsp
MRI(r,R) )

{fsp
atm(r); R ∈ ∆Ratm

fsp
atm(r)w(R) + fsp

MSCG,unf(R)(1 - w(R)); R ∈ ∆Rtr

fsp
MSCG,unf(R); R ∈ ∆RCG

(6)

fsp
atm(r) ) fsp

sr (r) + fsp
coul(r), (7)

fAB
MSCG ) ∑

i,j

fiA,jB
MSCG,unf(RAB) (8)

fiA,jB
MSCG,unf ) f iA,jB

MSCG,unfeij
AB (9)

eij
AB ) eAB ) RAB/RAB (10)

f iA,jB
MSCG,unf/eqp ) fAB

MSCG/(NRN�) (11)

eij
AB ) RAB/RABsgn(qiqj) (12)

f iA,jB
MSCG,unf/coul ) fAB

MSCGqiqj/(QRQ�)
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configurational average over group orientations. The fol-
lowing form meets this condition:

where

In eq 14, the term:

represents the instantaneous deviation of the group orientation
from its ensemble average. The first term is defined in terms
of inner products of vectors as follows:

where the dipoles are separated by a distance RAB and nAB is
a unit vector along the radius vector RAB. Indeed, eq 13
produces the desired configurational average because

A factor of 2 was introduced in the definition of D(RAB, dA,
dB) [eq 14] so that D can adopt positive or negative values.
The 〈ddA,dB

〉 term can be calculated in advance, for example,
by taking an ensemble average over the same atomistic
trajectories and mesh that were used to obtain the MS-CG
potentials. More generally, a number of different functions
D(RAB, dA, dB) might be constructed for eq 13 which satisfy
the condition in eq 17. This scheme is referred to as the
dipole-disorder, or more simply, the dipole algorithm.

The last drawback of the equipartition algorithm, noncen-
trality of the unfolded forces, can be circumvented by
assigning the force of eq 11 to only one pair of atoms: the
i, j (i.e., NR, N� ) 1 and eij

AB ) rij/rij) that lie closest to the
CMs of their respective atomic groups. It is then assumed
fMSCG,unf ) 0 for the rest of the atom pairs. For example, in
the case of water, the unfolding forces can be assumed to
be nonzero only for the O-O pair. Such a scheme may be
sufficiently accurate for systems with smaller CG groups,
such as water molecules.

To summarize, we note that the MRI model described in
this section can be viewed as a mixed resolution generaliza-
tion of cutoff treatments where the long-ranged interactions
depend on the charge (or neutrality) of the groups. The
underlying idea is similar in that interactions between atoms
are switched to CG interactions when the separation between
two groups becomes larger than a predefined cutoff. They
differ because the resolution of the interaction changes in
the present MRI approach.

3. MRI Models of Bulk Polar Solvents

3.1. Water. The accuracy of MRI modeling will first be
explored for TIP3P bulk water under ambient conditions (T
) 300 K and p ) 1 bar). The interactions in the CG zone
are represented by one-site MS-CG potentials similar to those
presented in ref 8. The reference system used to obtain the

MS-CG interactions consisted of 512 molecules in a periodic,
cubic volume simulated under constant NVT conditions and
equilibrium density (1014.6 kg/m3). Electrostatic interactions
were treated using the Ewald summation method, and
Lennard-Jones interactions were cut off at 1 nm. The
configurations of this simulation were sampled each 0.1 ps,
over a total of 100 ps. Two effective CG interactions were
derived from the same atomistic trajectory/force data: one
where the CG sites were located at the group CM, and
another where they were located at the group geometrical
centers (GC). MS-CG forces were determined using the
block-averaging method on a linear mesh covering distances
up to 1 nm, with a bin size of 0.005 nm. The result was
insensitive to block size.

These two CG potentials, hereafter referred to as the CM
and GC potentials UCM

MSCG and UGC
MSCG, respectively, are shown

in Figure 2. The same plot shows CM and GC radial
distribution functions (RDFs) (denoted by gMM and gGG,
respectively) derived from the reference atomistic MD and
MS-CG simulations (the latter being lines labeled as “MS-
CG/CM(GC)” in the legend). The RDFs resulting from the
CG simulations are rather different from the structures seen
in the reference atomistic MD simulation. The MS-CG/GC
and atomistic gGG RDFs exhibit a reasonably close match s
the positions of the first and second solvation shells are well
captured in the MS-CG simulation. The CM and CG

fiA,jB
MSCG(RAB, dA, dB) ) fAB

MSCG/(NRN�)D(RAB, dA, dB)
(13)

D(RAB,dA,dB) ) 2δddA,dB
(RAB) + 1 (14)

δddA,dB
(RAB) ) ddA,dB

- 〈ddA,dB
〉 (15)

ddA,dB
) (dA,dB) - 3(dA,nAB)(dB,nAB) (16)

〈D(RAB,dA,dB)〉d ) 1 (17)

Figure 2. (a): One-site effective CG interactions associated
with CM (solid), GC (dashed) sites for bulk TIP3P at ambient
conditions and configurationally averaged interaction between
an oxygen atom (O) and a water molecule scaled by a factor
of 4 × 10-2 (dot-dashed). (b): Magnified tail region of
potentials from (a). (c): CM and GC RDFs, gMM, gGG from the
reference atomistic (solid and dashed, respectively), MS-CG/
CM (filled circles), and MS-CG/GC (empty circles) simulations.
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potentials also nearly coincide at short separations (r < 0.285
nm), that is, up to the position of the first peak in gMM or
gGG. Their correspondence indicates that hydrogen bonding
in a well-defined arrangement of interacting molecules is the
dominant contributor to MS-CG potentials at these separa-
tions. Beyond the first peak, the molecular orientations
become increasingly random causing the two potentials to
differ. The CM and GC potentials also coincide at large (r
> 0.71 nm, vertical-dotted lines in Figure 2) separations, that
is, roughly the outer edge of the second solvation shell. The
CM potential is substantially more attractive at intermediate
distances, with a depth of almost - 0.75 kJ/mol compared
to - 0.25 kJ/mol for the GC potential. The overall neutrality
and small size of the water molecule implies a fast decay of
the effective one-site interaction and also explains its
insensitivity to the location chosen for CG sites at relatively
short separations. In Figure 2a, we have plotted an effective
interaction between an oxygen atom and a water molecule
as a function of O-CM distance. The effective potential was
obtained by averaging the O-H2O potential energy over all
configurations along the reference atomistic trajectories.

The CM and GC potentials start showing similarities at
0.71 nm, suggesting that this distance should be the size of
the atomistic zone ∆Ratm. Due to agreement of the CM and
GC MS-CG potentials at distances larger than 0.71 nm, one
might expect that convergence of the properties in the MRI
simulations can be reached with an atomistic zone radius
Ratm larger than that distance. As will be discussed later, this
is indeed the case. We, therefore, carried out MRI simulations
using both MS-CG/CM and MS-CG/GC potentials and cutoff
to the atomistic zone at Ratm ) 0.05, 0.35, 0.5, 0.7, and 0.75
nm (the models are labeled MRI/CM(GC)/Ratm). All models
used a transition zone of width ∆tr ) 0.1 nm. We note that
standard deviation of temperature in the NVT simulation for
Ratm ) 0.7 nm was similar to that found in the Ewald
atomistic simulation (7.7 K). For Ratm ) 0.35 nm, the
standard deviation of temperature increased to 8.6 K.

The MRI/CM and MRI/GC models with almost no
atomistic zone (Ratm ) 0.05 nm), so that all interactions are
unfolded from the MS-CG potential, performed very differ-
ently. The MRI/CM/0.05 simulation exhibited glassy dynam-
ics, with overstructured RDFs (the first peak in gOO is at
6.0), and a diffusion coefficient several orders of magnitude
lower than the atomistic simulations predict. By contrast,
the MRI/GC/0.05 simulation yielded accelerated dynamics,
understructured RDFs (max gOO ) 1.4) and diffusions almost
twice as fast as the fully CG MD simulation, or 10 times
faster than the atomistic diffusion. The internal pressure was
large and positive in both cases. Clearly, these results
demonstrate that it is essential in the MRI method to have
the atomistic zone of a sufficient size in order to achieve
accurate results.

Figure 3 compares the structural properties (O-O RDFs)
of TIP3P bulk water obtained from MRI simulations using
other values of Ratm as well as the reference atomistic and
the fully MS-CG data. The MRI simulations were run in
the constant NPT ensemble for Ratm ) 0.7 and 0.75 nm and
run in the constant NVT ensemble for smaller values of Ratm.
MRI/CM simulations produced a slightly worse liquid

structure for Ratm e 0.5 nm, a direct consequence of the less-
accurate structure produced by the MS-CG MD simulation
with the bare CM potential (see Figure 2). Diffusion
coefficients and some other thermodynamic properties from
the MRI/CM and MRI/GC simulations are summarized in
Table 1. All MRI models accurately modeled the first
solvation shell, but the structure, dynamics, and thermody-
namic properties of the liquid only became good as Ratm

approached 0.71 nm (i.e., the distance beyond which the CM
and CG potentials begin to coincide, cf. Figure 2b). As can
be seen from the data shown in the Supporting Information
(Table 1S), simulations using the Coulomb and dipole
unfolding schemes for Ratm > 0.7 nm performed similar to
the equipartition unfolding. At smaller values of Ratm, the
dipole unfolding scheme in the constant NVT simulation
yielded a slightly better structure and dynamics compared
to those of the equipartition and Coulomb schemes. Unfor-
tunately, including orientation-dependent interactions in the
CG zone via dipole unfolding did not improve the pressure-
related properties of the liquid.

Figure 4 shows the distribution of the three-body orien-
tational order parameter:

where OjOiOk is the angle formed by the oxygens of a central
molecule and two of its four closest neighbors.24 The average
〈q〉 is a measure of tetrahedral order, where a value of 1
indicates a perfect tetrahedral network and a value of 0
indicates uncorrelated particles. The MRI models whose

Figure 3. Comparison of the oxygen-oxygen structure in
TIP3P water at ambient conditions, simulated with the atom-
istic Ewald (red), MS-CG/GC (dashed), and MRI/GC interac-
tions. In the latter cases, various sizes of the atomistic zone
are also shown: Ratm ) 0.35 (dotted), 0.5 (crosses), 0.7
(pluses), and 0.75 nm (solid). (c) Atomistic Ewald and MRI
structures are compared to an atomistic structure obtained
using the FS (empty circles) and FM electrostatic descriptions
(filled circles).

q ) 1 - 3
8 ∑

j)1,3
∑

k)j+1,4
(cos OjOiOk +

1
3)2

(18)
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atomistic zones extend beyond the radius of the first solvation
shell accurately reproduce the atomistic q distribution (giving
values of 〈q〉 ) 0.63 for both the atomistic Ewald and MRI/
0.75 simulations). In the simulation with Ratm ) 0.35 nm, a
distance which just reaches the first solvation shell, the
distribution of q shifted to smaller values (〈q〉 ) 0.52). This
result suggests a decreased probability of finding nearest
neighbors arranged tetrahedrally and, thus, suggests a softer
hydrogen bonding. As reported in one of our previous
papers,25 adding a cutoff radius to the electrostatic interaction
with force-shifted potentials does not affect the distribution
of q for TIP3P water. However, a short-ranged model
developed using the inverse MC method26 appears to be
much less accurate than MRI models with Ratm > 0.7 nm.

Another informative quantity is the deviation between the
MRI and atomistic force fields, in terms of the total force
acting on each atom in a configuration. Figure 5a shows the
time evolution of the ratio between the Euclidean norm of
this deviation and the atomistic force:

where the sum is over all atoms in the configuration. On the
same plot, the ratio ∆F is evaluated for simulations using

two cutoff electrostatic potentials:25 one using a force-shifted
(FS) and the other using a force-matched (FM) correction
with Rcut ) 1.0 nm. (The FM correction is a short-ranged
representation of Ewald electrostatics, obtained through
force-matching Ewald trajectories in the bulk SPC/E water
under ambient conditions.)25 Even for the MRI potential with
an atomistic zone as large as 0.75 nm, the average error in
the MRI forces is 3.5 times larger than that of the error
produced with FS electrostatics. Figure 5b shows the relative
contribution of the unfolded to the total forces in MRI models
with various Ratm values and unfolding schemes. The CG
contribution is consistently small: for the equipartition
scheme, it is 8 × 10-3 at Ratm ) 0.3 nm and less than 1 ×
10-3 at Ratm > 0.7 nm. The constant NPT simulation with a
neutral group-based cutoff, however, produces significantly
denser water (by about 2-3%) than the Ewald simulation.
This error noticeably and adversely affects the liquid
structure, but surprisingly the diffusion rate is close to the
atomistic value. In the constant NVT simulation at the Ewald
equilibrium density, diffusion slowed to 4.7 × 10-9 m2/s.
The MRI potential with Ratm ) 0.7 nm, however, reproduced
the target density to within 0.4-0.5%, and the rate of self-
diffusion to within 2%. The results further improved with
the MRI/0.75 model, as seen in Table 1. These observations
highlight the importance of a repulsive component to the
effective one-site MS-CG potentials at distances R > 0.7 nm
(see Figure 2b), which is absent from the effective interac-
tions that ignore many-body correlations, such as group-based
cutoffs.

3.2. Methanol. In this section, we consider one-site and
two-site MS-CG models of liquid methanol (CH3OH), similar
to those reported in ref 8. A one-site MS-CG model with
the CG site assigned to the molecular CM was previously
shown to capture the structure of liquid methanol far better
than that of a similar CG treatment of water.8 A two-site
model mapping the OH and CH3 groups to CG sites also
yielded good structural properties.

The reference atomistic simulation consisted of 125 MeOH
molecules at T ) 300 K in the constant NVT ensemble,
contained in a box having 2.048 nm side lengths, and
equilibrated for 2 ns. The interactions were modeled using
Ewald electrostatics and the OPLS-AA force field,27 which

Table 1. Properties of Bulk TIP3P Water at Ambient Conditionsa,b

model, Ratm(nm) atm 0.35 0.50 0.70 0.75

Nsol/min gOO 7.2/0.377 6.4/0.363 6.8/0.368 7.2/0.377 7.2/0.377
7.9/0.388 6.53/0.368 7.2/0.377 7.2/0.377

F(δF) [kg/m3]/P (bar) 1014.6(11.8)/3.7 .../-1658.4 .../-915.9 1019.1(12.0)/3.7 1015.6(11.8)/3.7
.../+641.0 .../-687.3 1020.0(12.0)/3.7 1015.1(11.8)/3.7

Ds (10-9m2/s) 5.3 6.3 5.7 5.4 5.4
8.1 5.5 5.4 5.4

Uconf(δUconf) [kJ/mol] -41.1(0.3) -44.8(0.4) -45.2(0.4) -45.9(0.4) -45.9(0.4)
-43.0(0.4) -45.2(0.4) -46.0(0.4) -46.0(0.4)

κT (10-5 bar-1) 4.9 - - 5.0 4.9
- - 5.0 4.9

a As determined from atomistic MD (atm) with Ewald summation and MRI simulations for various atomistic zone sizes Ratm. b Among the
MRI models (columns three through six), the first line is for center-of-mass CG sites (MRI/CM), and the second is for geometrical center CG
sites (MRI/GC). The properties shown are Nsol/min gOO, [number of molecules in first solvation shell]/[first minimum in gOO]; F(δF)/P, [density]/
[equilibrium pressure], where the standard deviation of density is shown in parentheses if the constant NPT ensemble is used, and the
symbol “...” denotes that the constant NPT was not used. Additional tabulated results are: Ds, the self-diffusion coefficient; Uconf(δUconf), the
average configuration energy per particle (and its standard deviation in parentheses); and κT, the isothermal compressibility.

Figure 4. Distribution of the order parameter q, P(q) from eq
18, from the atomistic Ewald (red) and MRI/CM simulations
with Ratm ) 0.35 (solid), 0.5 (dashed), 0.7 (dotted), and 0.75
nm (also red). The last is essentially identical to the exact
Ewald simulation.

∆F )

( ∑
I∈conf

||FI
cutoff - FI

Ewald||)1/2

( ∑
I∈conf

||FI
Ewald||)1/2

(19)

3238 J. Chem. Theory Comput., Vol. 5, No. 12, 2009 Izvekov and Voth



is six site and flexible. The MS-CG procedure was essentially
the same as for the water system. Figure 6a compares the
effective MS-CG one-site interactions between molecular
CMs and between GCs. The MS-CG/CM and MS-CG/GC
force fields produced virtually identical RDFs to the reference
atomistic RDFs (gMM and gGG, in arbitrary units, are presented
in the same figure).

As the MeOH molecule is polar, one might expect that
the effective one-site MS-CG interaction is insensitive to
location of CG site at sufficiently large separations. As seen
in Figure 6a, this is indeed the case. The MS-CG/CM and
MS-CG/GC potentials both decay rapidly out to about 0.5
nm, exhibit substantial differences in the intermediate region,
and then become indistinguishable (within the tolerance of
the MS-CG procedure) at R ) 0.71 nm. This threshold is
surprisingly close to that of the water one-site model. By
contrast, the MS-CG CM and GC interactions in a two-site
representation, shown in Figure 6b, differ at all distances
within 1.0 nm because the OH and CH3 groups are charged
and because the interaction between them decays less rapidly
with distance.

For the one-site potentials, the structures generated by the
MRI/CM and MRI/GC potentials improved progressively for
larger values of Ratm, as demonstrated in Figure 7. The reason

for the convergence of the properties is the agreement
between the CM and GC one-site MS-CG potentials at
distances larger than 0.71 nm, as discussed earlier for the
case of water. For Ratm ) 0.75 nm, the structure was virtually
identical to the atomistic case. In contrast with water,
however, the one-site methanol MRI potentials failed to
reproduce the reference diffusion and internal pressure (and,
therefore, density) as shown in Table 2. Diffusion in the MRI/
CM/0.75 simulation was about 1.5 times faster, and the
density was about 3.7% higher (if an isothermal compress-
ibility of 12.2 × 10-5 bar-1 is assumed). However, the
equilibrium pressure was positive in the MRI/CM/0.5
simulation and negative in the MRI/CM/0.75 simulation. One
possible explanation for the difficulty with pressure repro-
duction in the MRI simulation is a large size of the MeOH
molecules, as compared to water. Thus, an intermediate value
of Ratm would reproduce the correct density in the MRI
simulation.

4. Atomistic/MRI Modeling: Solutes in MRI
Water

In terms of geometry and charge distribution, the MRI
effective potentials are expected to be short ranged for small,
neutral groups. In principle, to simulate a system containing

Figure 5. (a): Time evolution of the relative error ∆F in the
Euclidean norm of the net forces (eq 19), resulting from MRI
interactions with various atomistic zone cutoffs, compared to
fully atomistic interactions. The net forces on each atom in
the simulation at a given time step of the simulation are
summed in calculating this error, and the atom trajectories
are determined using a fully atomistic scheme. Data are also
shown for reference atomistic simulations using the FS and
FM description of electrostatics. The white lines show running
time averages of each quantity. (b): Relative average contri-
butions of the unfolded MS-CG/GC forces to the total forces
using equipartition (solid), Coulomb (filled circles), and dipole
(open circles) unfolding schemes.

Figure 6. One-site (a) and two-site (b) MS-CG effective
interactions associated with the CM (solid) and GC (dashed)
sites for bulk MeOH at ambient conditions. The CM and GC
RDFs from the reference atomistic and MS-CG (filled and
empty circles) simulations are depicted in arbitrary units for
one-site coarse graining.
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charged species/groups, the MRI description may be intro-
duced for neutral species, while the rest are treated on the
atomistic level. In water solutions, for instance, the
water-water interaction can be modeled using MRI, while
the water-solute and solute-solute interactions are described
atomistically. Such a description would be especially justified
for bulky or charged solutes in solvents, such as water with
low molecular weight. In many systems, such as biomolecu-
lar simulations, solvent-solvent interactions are the most
computationally intensive aspect of the model. In such cases,
MRI modeling of water may substantially increase simulation
efficiency.

As the water and methanol examples have shown, MRI
modeling is more efficient in scenarios where the effective
intergroup interactions decay faster. Rapid decay is indicative
of dominant high-order terms in the multipole expansion.
The two lowest order multipole potentials, those between
point charges and between a point charge and a dipole, are
both long range. In the periodic simulation geometry, they
even contain contributions from infinitely remote particles
via the Ewald summation. The MRI formalism may,
therefore, be less accurate in describing low-order interac-
tions. This issue will now be explored.

4.1. Aqueous Ionic Solutions. As an example of such a
mixed description, we now consider an aqueous ionic
solution. The water-water interaction can be efficiently
treated using the MRI formalism with an adequately large
atomistic zone, as discussed in Section 3.1. Each ion is also
a simple group but charged, so water-ion and ion-ion
interactions have to be treated atomistically. Use of the MRI
water-water interaction implies that ion-water electrostatics
should also be evaluated using an approximate scheme, such
as cutoff electrostatics. The latter requirement holds further
for the ion-ion interaction, as the ionic subsystem is charged.
In the mixed atomistic/MRI models reported here, we, thus,
used an electrostatic potential with a FM correction25 of Rcut

) 0.9 nm. The FM correction has been shown to be
transferable to different water models, thermodynamic condi-
tions, and aqueous solutions, outperforming conventional
cutoff treatments, such as (damped) force-shifted potentials.25

Two ionic solutions with approximately the same con-
centration were simulated. The first consisted of 4 sodium
ions in 512 TIP3P water molecules, and the second had 12
ions in 1500 TIP3P molecules. The simulation volumes were
periodic cubes of edge length 2.476 and 3.543 nm, respec-
tively. In the reference atomistic simulations, carried out
under constant NVT conditions, electrostatics were evaluated
for the whole system using the Ewald method. In high-
dielectric solvents, such as water, ionic charging free energies
calculated by Ewald summation are largely invariant to the
system size.28 The use of counterions to maintain the charge
neutrality of the system is, therefore, not necessary. In the
atomistic/MRI model, the water-water interaction was
described using various MRI/GC potentials with atomistic
zones up to Ratm ) 0.75 nm in size. Note that the bulk
properties of water are well reproduced by the Ratm ) 0.75
nm model, as discussed earlier.

The water solvation structure of the ion was reproduced
accurately by the mixed MRI/atomistic simulation, as can
be seen in the Supporting Information (Figure 1S). The only
difference was a slightly overstructured first solvation shell:
max [gNa+-O] ) 7.2 in the MRI model compared to 6.9 in
the fully atomistic Ewald simulation. This small difference
is likely a consequence of our use of cutoff electrostatics in
the atomistic interaction set for the mixed simulation. Despite
the good structure of the MRI water, the structure of ionic
association was drastically altered. Figure 8a compares the
ion-ion RDFs of the reference atomistic and MRI/GC water
simulations. In the latter, the ions show an excessive tendency
to aggregate, which grew progressively stronger for smaller
values of Ratm. Figure 8b shows the effective solvent-free
ion-ion potentials, obtained using the MS-CG method. The
results are similar to the all-site MS-CG potentials and, like
them, can be interpreted as an approximate pairwise decom-
position of the all-ion PMF. For complexes of two ions, the
solvent-free ionic MS-CG potential is simply a pairwise
PMF.

In the MRI water simulation with Ratm ) 0.4 nm, the ions
organized into a close-packed structure with a binding energy
of -17 kJ/mol. After rapid formation of the ionic complex,
they remained confined within a distance of about Ratm for
the rest of the simulation. Even in the MRI water simulation

Figure 7. Comparison of the CM-CM structure (a) and
atom-atom structure (b) in the liquid MeOH at ambient
conditions, simulated with the atomistic Ewald (red) and MRI
models with various sizes of the atomistic zone: Ratm ) 0.4
(dashed), 0.5 (thin solid), and 0.75 nm (filled circles).

Table 2. Properties of Bulk Liquid Methanol at Ambient
Conditionsa,b

model, Ratm (nm) atm 0.40 0.50 0.75

P (bar) 6 5 386 2 587 -302
Ds (10-9 m2/s) 2.31 9.35 5.05 3.36

a As determined from atomistic MD (atm) with Ewald summation
and one-site MRI/CM simulations with various atomistic zone sizes
Ratm. b The atomistic simulations were in the constant NPT
ensemble, while the MRI simulations were in the constant NVT
ensemble at equilibrium atomistic density (773.7 kg/m3). The
properties listed here are P, the equilibrium pressure, and Ds, the
self-diffusion coefficient.
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with Ratm ) 0.75 nm, the effective ion-ion interaction was
significantly more attractive than that of fully atomistic data,
with a globally stable contact minimum of -3.3 kJ/mol. The
position of the minimum (0.38 nm), however, is close to
the metastable contact minimum of the atomistic effective
potential. The ion-ion effective interaction in the MRI/GC/
0.75 water solution exhibits a high barrier with a maximum
at about Ratm. A similar feature is probably present in the
MRI/GC/0.4 model, but it could not be verified as the region
outside Ratm was undersampled. In the reference atomistic
simulation, the ion-ion effective interaction almost vanishes
at distances of about 0.6 nm.

A possible origin of such behavior is explained in Figure
9. The unfolded CG interaction between water molecules is
an approximation to the atomistic water interaction in bulk
(between molecules W1

blk and W2
blk in Figure 9). Meanwhile,

structural correlations between water molecules inside and
outside the neighborhood of a solute (i.e., the region within
Rcut of a solute) will be strongly perturbed by the presence
of a charge (for example, between W1(2)

slt and W1
blk). Thus,

interactions in the perturbed zone of the water-water
environment may be not adequately represented by the
unfolded CG bulk interaction. This may lead to a more
complex solvation structure and, therefore, different solute
association dynamics.

The simplest remedy for the spurious, excessive segrega-
tion behavior is to describe the interactions between water
molecules from the Rcut

slt neighborhood (denoted W1(2)
slt in

Figure 9) and between all other molecules within Rcut,
including those from the “bulk” (e.g., W1(2)

slt -W1
blk interac-

tions), using the atomistic force field. The interaction between
solvent molecules, if both are outside the Rcut

slt solute region
(e.g., between the W1

blk and W2
blk molecules), can be safely

treated using the MRI formalism. Since the computational
efficiency of such a treatment increases with the ratio of:
(a) the number of water pairs formed by the bulk water
molecules to (b) the number of pairs in which at least one
molecule is within Rcut

slt of the solute species, the suggested
approach is suitable for systems with a large bulk water
subsystem (e.g., biological molecules in water). This idea is
referred to as the solute/bulk (slt/blk) scheme. Figure 10
shows the ion-ion structures of MRI simulations running
under the slt/blk scheme. For Rcut

slt ) 0.7 nm, the ionic
association dynamics were essentially identical to the fully
atomistic. In the 12-ion slt/blk MRI simulation with Rcut

slt )
0.3 nm, the ion-ion structure was reproduced with almost

Figure 8. Simulations of ions in water. Results are shown
for a simulation with 4 Na+ ions and 512 H2O molecules. (a):
Ion-ion RDFs from atomistic Ewald MD (red), MRI/GC water
with Ratm ) 0.4 nm (filled circles), and Ratm ) 0.75 nm (empty
circles) simulations. The atomistic oxygen structure around
the ions is also plotted (dashed line) as a reference. (b):
Corresponding many-body MS-CG ion-ion effective interac-
tion potentials.

Figure 9. Schematic description of the slt/blk scheme for a
treatment of water-water interactions in the MRI water ionic
solution.

Figure 10. Ion-ion structure for the same system (a), shown
in Figure 8, and for a simulation with 12 ions in 1 500 H2O
molecules (b). Both systems use the MRI/GC/0.75 model and
the solute/bulk (slt/blk) scheme for water-water interactions
(see Figure 9), with Rcut

slt ) 0.3 (triangles), 0.7 (thin solid), or
1.0 nm (circles). The solid line with crosses is for an MRI
simulation using the solute/solute (slt/slt) scheme, with Rcut

slt

) 1.0 nm. The dotted and dashed lines, which correspond to
the purely MRI modeling results shown as filled circle and
empty circle lines from Figure 8, respectively, are shown for
a comparison.
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atomistic quality, while in the 4-ion system with Rcut
slt ) 0.3

nm, the structure was somewhat worse. In the 4-ion simula-
tions under the slt/blk scheme, ionic diffusion was 1.05(0.01)
× 10-9 m2/s for Rcut

slt ) 0.7 nm but attained 1.18 × 10-9

m2/s for Rcut
slt ) 1.0 nm. The latter almost exactly matches

the atomistic MD value of 1.20 × 10-9 m2/s. The same
tendency was observed in the 12-ion simulations.

It could be argued that the slt/blk scheme goes too far in
its atomistic treatment of water-water interactions, as the
association dynamics of solutes are governed mainly by
interactions between water molecules from the ionic solvation
shells (note that it might be better to say “within the Rcut

slt

interaction shells”). However, it could be sufficient to
accurately evaluate only interactions between pairs of water
molecules that both lie within Rcut

slt of the solute. This scheme,
referred to as solute/solute (slt/slt), is certainly computation-
ally cheaper. Unfortunately, as demonstrated in Figure 10a,
the ion-ion structures are different under the slt/blk and slt/
slt schemes. A simulation with slt/slt enhancement of the
MRI water-water interactions yielded better solute dynamics
than one without, but the structure was still significantly
different from the fully atomistic results. In particular,
excessive contact (first peak in the RDF) and solvent-
separated (second peak) pairs were still apparent in the ionic
solute RDFs. The best results were, therefore, produced by
the slt/blk approach.

4.2. Lipid Bilayer System. In this section, the MRI water
model coupled with the slt/blk algorithm is applied to a
phospholipid dimyristoylphosphatidylcholine (DMPC) bi-
layer. The bilayer was represented by 64 DMPC molecules
and by 1 312 water molecules, corresponding to a hydration
of 21 H2O per DMPC. The DMPC molecules were modeled
using a united atom atomistic force field.29 This simulation
used the rigid TIP3P water model with Lennard-Jones interac-
tions for the hydrogen atoms set to zero. Electrostatic interac-
tions were calculated via the particle-mesh Ewald (PME)
summation.30 The initial configuration was taken from ref 31
and then equilibrated for 20 ns in the constant NPT ensemble.

The bilayer geometry represents an infinite polarized
interface between lipids and water, so the electrostatic

contribution to configurational energy within the monolayer
scales as 1/Rcut at distances greater than the cutoff Rcut. The
effective FM electrostatic interaction in disordered water
solutions decays much faster.25 As discussed in the litera-
ture,32 introducing a cutoff in the electrostatics may affect
interactions between the normal components of headgroup
dipoles. This issue could be a major factor, potentially
affecting bilayer properties, such as surface equilibrium area
and structure. It is, thus, best to treat the electrostatic
interactions between lipids as accurately as possible, using
the Ewald or PME methods. On the other hand, it has been
noted that the effect of a cutoff on the bilayer properties is
less important if the bilayer is properly hydrated (probably
>27-28 molecules per lipid), and that, with proper hydration,
the simulations of bilayers with a neutral group implementa-
tion do not suffer greatly from the omission of long-range
electrostatics.32 This observation suggests that our MRI water
model could be accurate enough for the bilayer simulation.

An appropriate scheme for simulating the bilayer in MRI
water is sketched in Figure 11. More specifically, water-water
interactions were treated using the MRI/GC/0.7 model and
the slt/blk scheme with Rcut

slt ) 0.6 nm, as described in Section
4.1. The MS-CG/GC one-site water potential was recalcu-
lated for this simulation, using a fit to the water subsystem
of the atomistic bilayer, and is, therefore, slightly different
from the MS-CG/GC bulk potential studied in Section 3.1.
One important difference is that the TIP3P potential in the
bilayer simulation sets Lennard-Jones interactions for hy-
drogen to zero. The polarized (more ordered) water structure
near the bilayer is a second major factor. Similar to the MRI
modeling of ionic solutions, lipid-water interactions in the
MRI modeling here were described atomistically with cutoff
electrostatics using the FM correction, with Rcut ) 0.9 nm
(see Figure 11). In this particular simulation geometry, about
30% of water-water pairs interacted through the MRI
potential. The Ewald method was used to evaluate the
electrostatic contribution to lipid-lipid interactions and can
be considered accurate due to the overall neutrality of the
lipid subsystem.

Figure 11. A schematic model of the interactions used in the simulating a DMPC bilayer in MRI water, with the slt/blk treatment
of water molecules at the interface. Line legend is same as in Figure 9.
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A comparison of the reference atomistic simulation using
the Ewald method, the MRI simulation, and an atomistic MD
simulation using the FS cutoff (Rcut ) 1.0 nm) is shown in
Figure 12. In Figure 12a, we compare the density profiles
of water and lipid groups, in accordance with the partitioning
adopted in ref 7 and shown in Figure 11. Figure 12b
compares the distributions of normal and in-plane group
orientations obtained by the three simulations. Note that the
FS cutoff and Ewald simulations produced very different
normal density distributions. In the cutoff simulation, the
DMPC density of headgroup sites was more localized, and
the water also penetrated less into the headgroup region,
resulting in a lower water density outside the center of the
water region. This water density profile is consistent with a
positive lateral pressure at the center of the water region.33

The lower hydration level of headgroups in the cutoff
simulation (compared to the Ewald simulation) affected
bilayer properties, such as equilibrium area per lipid. The
MRI water density follows virtually the same pattern. Thus,
it is fair to say that the loss of medium- and long-ranged
lipid-water and water-water interactions causes weaker

hydration of hydrophilic lipid sites in both the cutoff and
MRI simulations.

A surprising result is that the MRI simulation reproduced
the normal density of headgroup sites much better than that
of the FS cutoff simulation. This advantage is likely a result
of using the Ewald method to treat electrostatics within the
lipid subsystem. The headgroup orientations were also
slightly more accurate in the MRI simulation than in the FS
cutoff simulation. For example, the distribution of the normal
component of PH-CH was in better agreement with the
Ewald results. This result is important, as the normal
component of the interaction between headgroup dipoles is
strong.

5. Conclusions

In this paper a novel mixed resolution interaction (MRI)
method has been proposed that combines atomistic and
coarse-grained (CG) descriptions of molecular interactions
in condensed-phase systems. The method defines the mixed
resolution interactions only along the pairwise interactions
between particles and not at space-fixed boundaries in the
simulation cell like other mixed resolution approaches. The
total forces acting on individual atoms in the MRI framework
include both accurate atomistic contributions arising from
nearby molecules and from “unfolded” forces derived from
the molecular MS-CG forces between pairs of distant
molecules. We have also introduced a transition region
between the atomistic and CG zone, which smoothes the
forces. The MS-CG force fields, described fully elsewhere,
are based on a preselected partitioning of the system into
CG units and have been previously shown to properly
incorporate many-body effects.

Implementation of the MRI algorithm involves a CG
group-based cutoff treatment of interactions, similar to the
neutral group implementation used in cutoff electrostatics.
A group-based cutoff formalism is computationally more
demanding than a simple cutoff treatment. However, as
atomistic interactions outside the relative small atomistic zone
are still derived from the MS-CG forces through the
computationally cheap unfolding scheme mentioned above,
the MRI simulations will lead to significantly improved
computational performance, especially for very large systems.

The MRI methodology was applied to both liquid water
and methanol, both of which are important solvents. With a
sufficiently large atomistic zone, it was possible to achieve
a description of water properties superior to that provided
by simple cutoff methods. The MRI description of liquid
methanol resulted in good liquid structure, but thermody-
namic and diffusion properties were reproduced less ac-
curately. This deficiency may be attributable to the bulkier
methanol molecules or to the inaccuracy of the one-site CG
methanol model. For both water and methanol, the MRI
modeling is likely to be improved, if the underlying CG
model is made to be more thermodynamically and structur-
ally accurate.

The transferability of the MRI water potentials to inho-
mogeneous environments, however, appears to be more
challenging. For an aqueous ion solution, the MRI treatment
of water-water interactions led to unnatural stability in the

Figure 12. Structure of the DMPC bilayer determined using
atomistic Ewald (red), FS (solid thin), and MRI/0.75 with slt/
blk water (dashed) simulations. (a): Bilayer normal density
profiles of lipid groups and water (CM). (b): Distributions of
the normal (z) and in-plane (xy) components of vectors
connecting headgroup sites, PH-CH and GL-PH. The
partitioning of a DMPC molecule into CG groups is shown in
Figure 11. The symbols are: CH, choline moiety; PH, phos-
phate group; GL, glycerol backbone; E1, ester group at sn -
1 chain; and SM/ST, three-carbon groups of the acyl chains.
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ionic complexes. This artifact can be attributed to the fact
that water-water interactions are effectively different in the
environment perturbed by the ionic solutes. To improve the
dynamics of the ionic solute association, we added an
atomistic description of the interactions among water mol-
ecules within a preselected radius of the solutes. This
approach, denoted the solute/bulk (slt/blk) scheme, proved
to be effective and is expected to perform even better for
systems with a larger water subsystem (for example, solvated
proteins). We also tested a computationally less-expensive
algorithm for correcting the interactions in perturbed water,
where atomistic potentials are used only if both water
molecules belong to solute neighborhoods. However, this
approach proved insufficient to correctly simulate solute
association dynamics. Finally, the MRI description of water-
water interactions with the solute/bulk enhancement was
applied with reasonable success to simulate a phospholipid
bilayer, where the electrostatic interactions within the bilayer
subsystem were evaluated using accurate Ewald summation.

The advance described in this paper on mixed resolution
modeling must be considered preliminary. Clearly, the MRI
method does not always perform well for heterogeneous
systems, though likely it is better than purely coarse-grained
modeling of similar systems. Moreover, the fully efficient and
optimized computational implementation of the MRI method
remains for future work. Nevertheless, the overarching concept
of the MRI approach is a novel one that changes resolution of
the interactions as a function of only the interparticle separation
and not in terms of regions fixed in space.

Acknowledgment. The research was supported by the
National Science Foundation (CHE-0719522) and the Office
of Naval Research.

Supporting Information Available: Properties of bulk
TIP3P water at ambient conditions, as determined from MRI/
GC simulations with dipole (first line of data for each
property) and Coulomb (second line) unfolding schemes for
various atomistic zone sizes Ratm, and an Ion-water structure
for a 12 ion system in 1 500 water molecules. This material
is available free of charge via the Internet at http://
pubs.acs.org.

References

(1) Noid, W. G.; Ayton, G. S.; Izvekov, S.; Voth, G. A. The
Multiscale Coarse-Graining Method: A Systematic Approach
to Coarse Graining. In Coarse-graining of condensed-phase
and biomolecular systems; Voth, G. A., Ed.; CRC Press/
Taylor and Francis Group: Boca Raton, FL, 2009; pp 21.

(2) Shelley, J. C.; Shelley, M. Y.; Reeder, R. C.; Bandyopadhyay,
S.; Klein, M. L. J. Phys. Chem. B 2001, 105, 4464.

(3) Marrink, S. J.; Mark, A. E. J. Am. Chem. Soc. 2003, 125,
15233.

(4) Marrink, S. J.; de Vries, A. H.; Mark, A. E. J. Phys. Chem.
B 2004, 108, 750.

(5) Tozzini, V. Curr. Opin. Struct. Biol. 2005, 15, 144.

(6) Lyubartsev, A. P.; Laaksonen, A. Phys. ReV. E: Stat. Phys.,
Plasmas, Fluids, Relat. Interdiscip. Top. 1995, 52, 3730.

(7) Izvekov, S.; Voth, G. A. J. Phys. Chem. B 2005, 109, 2469.

(8) Izvekov, S.; Voth, G. A. J. Chem. Phys. 2005, 123, 134105.

(9) Izvekov, S.; Voth, G. A. J. Chem. Theory Comput. 2006, 2,
637.

(10) Ayton, G. S.; Noid, W. G.; Voth, G. A. Mat. Res. Bull. 2007,
32, 929.

(11) Zhou, J.; Thorpe, I. F.; Izvekov, S.; Voth, G. A. Biophys. J.
2007, 92, 4289.

(12) Liu, P.; Izvekov, S.; Voth, G. A. J. Phys. Chem. B 2007,
111, 11566.

(13) Noid, W. G.; Chu, J. W.; Ayton, G. S.; Voth, G. A. J. Phys.
Chem. B 2007, 111, 4116.

(14) Noid, W. G.; Chu, J.-W.; Ayton, G. S.; Krishna, V.; Izvekov,
S.; Voth, G. A.; Das, A.; Andersen, H. C. J. Chem. Phys.
2008, 128, 244114.

(15) Noid, W. G.; Liu, P.; Wang, Y.; Chu, J.-W.; Ayton, G. S.;
Izvekov, S.; Andersen, H. C.; Voth, G. A. J. Chem. Phys.
2008, 128, 244115.

(16) Praprotnik, M.; Site, L. D.; Kremer, K. J. Chem. Phys. 2005,
123, 224106.

(17) Christen, M.; van Gunsteren, W. F. J. Chem. Phys. 2006,
124, 154106.

(18) Praprotnik, M.; Site, L. D.; Kremer, K. Phys. ReV. E: Stat.
Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2006, 73,
066701.

(19) Praprotnik, M.; Kremer, K.; Site, L. D. Phys. ReV. E: Stat.
Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2007, 75,
017701.

(20) Praprotnik, M.; Site, L. D.; Kremer, K. J. Chem. Phys. 2007,
126, 134902.

(21) Praprotnik, M.; Kremer, K.; Site, L. D. J. Phys. A: Math.
Theor. 2007, 40.

(22) Ensing, B.; Nielsen, S. O.; Moore, P. B.; Klein, M. L.;
Parrinello, M. J. Chem. Theory Comput. 2007, 3, 1100.

(23) Delle Site, L. Phys. ReV. E: Stat. Phys., Plasmas, Fluids,
Relat. Interdiscip. Top. 2007, 76, 047701.

(24) Errington, J. R.; Debenedetti, P. G. Nature 2001, 409, 318.

(25) Izvekov, S.; Swanson, J. M. J.; Voth, G. A. J. Phys. Chem.
B 2008, 112, 4711.

(26) Matysiak, S.; Clementi, C.; Praprotnik, M.; Kremer, K.; Site,
L. D. J. Chem. Phys. 2008, 128, 24503.

(27) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am.
Chem. Soc. 1996, 118, 11225.

(28) Hummer, G.; Pratt, L. R.; Garcia, A. E. J. Phys. Chem. 1996,
100, 1206.

(29) Smondyrev, A. M.; Berkowitz, M. L. J. Comput. Chem. 1999,
20, 531.

(30) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98,
10089.

(31) Ayton, G.; Smondyrev, A. M.; Bardenhagen, S. G.; McMurtry,
P.; Voth, G. A. Biophys. J. 2002, 83, 1026.

(32) Wohlert, J.; Edholm, O. Biophys. J. 2004, 87, 2433.

(33) Lindahl, E.; Edholm, O. J. Chem. Phys. 2000, 113, 3882.

CT900414P

3244 J. Chem. Theory Comput., Vol. 5, No. 12, 2009 Izvekov and Voth



Electrostatic Interactions in Dissipative Particle
Dynamics: Toward a Mesoscale Modeling of the

Polyelectrolyte Brushes

Cyrille Ibergay,† Patrice Malfreyt,*,† and Dominic J. Tildesley‡

Laboratoire de Thermodynamique et Interactions Moléculaires, FRE CNRS 3099,
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Abstract: We report mesoscopic simulations of bulk electrolytes and polyelectrolyte brushes
using the dissipative particle dynamics (DPD) method. The calculation of the electrostatic
interactions is carried out using both the Ewald summation method and the particle-particle
particle-mesh technique with charges distributed over the particles. The local components of
the pressure tensor are calculated using the Irving and Kirkwood, and the method of planes
and mechanical equilibrium is demonstrated. The profiles of the normal component of the
pressure tensor are shown to be similar for both the Ewald and particle-particle particle-mesh
methods for a single polyelectrolyte brush. We show that the PPPM method with the MOP
technique is the appropriate choice for simulations of this type. The mesoscale modeling of a
strongly stretched polylectrolyte brush formed by strong charged polymer chains at a high grafting
density shows that the polyelectrolyte follows the nonlinear osmotic regime, as expected from
the calculation of the Gouy-Chapman length and the dimensionless Manning ratio.

1. Introduction

Molecular simulations of polymers and surfactant solutions
demands modeling on a hierarchy of length and time scales
spanning several orders of magnitude. For example, in a
polymer brush, the size of the atomic constituents is on the
order of 1 Å, and the fastest motions are at times on the
order of 10-14 s, whereas collective relaxation in the system
can occur on a scale of micrometers and at times that exceed
1 ms. Molecular simulations of brushes require that the
equations of motion be solved with a time scale of a
femtosecond and a length scale of angströms, and this might
not be the most efficient approach for studying mesoscale
phenomena such as the friction between brushes.

The development of simulation techniques capable of
accessing mesoscopic length and time scales is an area of
active research.1-4 One approach is the dissipative particle

dynamics (DPD) method, initially proposed by Hoogerbrugge
and Koelman.1 This method consists of reducing the
complexity of the atomistic description of the system through
the use of a coarse-grained model. In this method, a number
of atoms are combined into particles that interact with each
other through soft conservative and pairwise dissipative and
random forces. The dissipative and random forces are related
through the fluctuation-dissipation theorem, leading to a
local conservation of the momentum, which is required for
a correct description of hydrodynamics.3 DPD has been
successfully applied to investigate a variety of soft-matter
problems such as the microphase separation of block
copolymers,5,6 polymer surfactants in solution,7 and the
structure and rheology of biological membranes.8

We have used the DPD approach to study the interaction
between two solid surfaces coated with grafted polymer
chains. At a relatively high surface coverage under good
solvent conditions, the polymer chains are strongly stretched
in the direction perpendicular to the surface; this leads to a
structure called a polymer brush. End-grafted polymer chains
give rise to a wide range of important industrial applications

* Corresponding author e-mail: Patrice.MALFREYT@
univ-bpclermont.fr.

† TIM, FRE CNRS 3099.
‡ Unilever Research.

J. Chem. Theory Comput. 2009, 5, 3245–3259 3245

10.1021/ct900296s CCC: $40.75  2009 American Chemical Society
Published on Web 10/29/2009



in the stabilization of colloidal suspensions, adhesion,
lubrication, friction, and wear. We have also adapted the
standard DPD method9 to model the friction between two
polymer brushes as a function of the quality of the solvent10

and the separation between the surfaces.11,12

In this article, we aim to simulate charged polymers grafted
to surfaces. Recent experiments have shown that polyelec-
trolyte brushes are better lubricants than neutral brushes.13

However, the inclusion of the long-range electrostatic
interactions in DPD is required to model such effects
accurately. Electrostatic interactions were recently introduced
into DPD by Groot14 and by Alejandre and co-workers.15

Both proposed replacing the point charge at the center of
the DPD particle with a charge distribution smeared across
the particle. Groot proposed a method in which the electro-
static field is calculated locally using a grid technique,
whereas Alejandre et al. used a modification of the standard
Ewald sum method.16 These two methods have been applied
to study a bulk electrolyte and polyelectrolyte-surfactant
solutions.14,15 Good agreement was found between the two
methods for the radial distribution functions of charged
particles in bulk electrolytes and polyelectrolyte-surfactant
solutions. In this article, we compare these methods for
systems with reduced periodicity.

In a brush system, the calculation of the friction coefficient
requires the calculation of the normal and tangential com-
ponents of the pressure tensor. When the system is nonpe-
riodic in one dimension, it is important to calculate profiles
of the pressure tensor along this axis. This establishes the
mechanical equilibrium in the system and allows an accurate
average value of the friction to be obtained from the
profile.10,12,17 In this work, we consider the most efficient
way of calculating the profiles of the pressure tensor when
electrostatic interactions are included in the DPD approach.

Different methods can be used to calculate the local
pressure components along a specific direction. The potential
term in the pressure tensor introduces arbitrariness because
there is a choice of the contour joining the two particles.
Several choices have been developed to calculate the
potential component of the pressure tensor, including those
of Irving and Kirkwood (IK)18 and Harasima.19 The IK
definition is applicable only for pairwise-additive interactions.
Contributions such as the reciprocal part of the electrostatic
interactions treated with the Ewald sum are not pairwise-
additive, so the definition of Harasima can be used.20,21 An
alternative approach consists of using the method of planes
(MOP) formalism,22 which avoids the heuristic notions of
the force across a unit area. This method can be applied to
both pairwise-additive and non-pairwise-additive interactions.
In this work, we compare these approaches.

Additionally, in some important cases, the modeling of a
surface requires a system that is nonperiodic in the third
dimension. The conventional Ewald summation method can
be applied by elongating the primary cell in the direction of
the surface by adding a sufficiently large vacuum between
the periodic images. The aim is to dampen out the interslab
interactions. This methodology is often referred to as the
supercell approximation, and it has been applied success-
fully.23-25 To remove the forces due to the net dipole of the

periodically repeating slabs, a correction dipole term must be
added.23,24 This methodology is known as the EW3DC method.

There are some quasi-periodic Ewald methods, such those
due to Hautman and Klein26 and Lekner,27 that can be
applied in these geometries. These often result in series
expansions of the electrostatic interactions where the con-
vergence depends on the particular distribution of particles.
In addition, these methods can be extremely expensive in
terms of computational resources. However, the MMM
technique28 adapted by Strebel and Sperb29 for slab
geometries30,31 maintains a reasonable computational cost
with an O(N5/3 log N) behavior, where N is the number of
charged particles. Therefore, we do not consider these
methods further in the work. Instead, we employ the Groot
particle-particle particle-mesh (PPPM) method in the case
of a slab geometry, as well as the EW3DC approach.

To explore the different methods for accounting for the
electrostatic interactions in the calculation of the local
pressure components, we focus on three model systems: a
three-dimensional bulk electrolyte, a bulk electrolyte embed-
ded between two parallel surfaces, and a system of charged
polyelectrolyte brushes. We then use these systems to
validate the methodology, and we complete this work
with a preliminary study of grafted polyelectrolytes, which
represent an interesting topic with many unresolved problems
for both experiment and theory. The system studied presently
is a model system formed with a high surface coverage and
a relatively strong charge fraction.

In section 2, we present the conventional forces used in
the DPD model. In section 3, we describe the two techniques
used for the calculation of the electrostatic forces. The
different definitions for the calculation of the local compo-
nents of the pressure tensor are described in section 4. The
results for the different model systems are given in section
5. Finally, we conclude in section 6 by providing a brief
summary of our main results.

2. Dissipative Particle Dynamics (DPD)
Model

2.1. Standard DPD Forces. In the DPD approach, solvent
particles are coarse-grained into soft beads that interact with
the pairwise-additive force fi defined as the sum of three
contributions

where f ij
C, fij

R, and fij
D are the conservative, random, and

dissipative forces, respectively. The conservative repulsive
force, f ij

C, derives from a soft interaction potential and is
expressed as

where aij is the maximum repulsion parameter between
particles i and j, rij is the relative displacement of particles
i and j, and r̂ij is the corresponding unit vector. The weight
function ωC(rij) is equal to 1 - rij/rc for rij e rc and vanishes

fi ) ∑
j*i

(fij
C + fij

R + fij
D) (1)

fij
C ) {aijω

C(rij)r̂ij
(rij < rc)

0 (rij g rc)
(2)

3246 J. Chem. Theory Comput., Vol. 5, No. 12, 2009 Ibergay et al.



for rij g rc. The dissipative and random forces are given
by

where δt is the time step. vij ) vi - vj is the relative velocity,
σ is the amplitude of the noise, θij is a random Gaussian
number with zero mean and unit variance. γ and σ are the
dissipation strength and noise strength, respectively. The
terms ωD(rij) and ωR(rij) are dimensionless weighting func-
tions. Espanol and Warren3 showed that the system will
sample the canonical ensemble and obey the fluctuation-
dissipation theorem if the following conditions are satisfied:

where kB is the Boltzmann constant and T is the temperature.
The weighting function ωR(rij) is chosen to be similar to
ωC(rij).

The equations of motion are integrated using a modified
version of the velocity-Verlet algorithm.14 The force is
updated once per iteration, and because the force depends
on the velocities, the velocity in the next time step has to be
estimated by a predictor algorithm. The velocity is then
corrected in the last step. The reduced time step δt was taken
as 0.02 for all of the simulations, except for those involving
polyelectrolyte brushes, for which it was equal to 0.06.

When fully flexible polymer chains are considered in
solvent, the integrity of the polymer chain is ensured by an
additional spring force between neighboring beads given by

where the equilibrium bond distance r0 is 0 and the spring
constant ks ) 4.0. This pairwise force is then added to the
sum of the DPD conservative force in eq 1.

3. Electrostatic Interactions

In the following sections, we present two techniques to take
into account the electrostatic interactions at a mesoscopic
level. The first one consists of solving the electrostatic field
on a grid. This is referred to as the particle-particle particle-
mesh (PPPM) algorithm,32-34 although, in the original
version of the PPPM algorithm, the far field was solved
using a fast Fourier transform.14,32,35 The second consists
of adapting the standard Ewald method to DPD particles.

3.1. Particle-Particle Particle-Mesh (PPPM) Method.
Electrostatic interactions were incorporated into the DPD
model by Groot.14 The first step consists of finding a model
for the density distribution adapted to a charged bead. The
use of a soft potential in DPD allows for the overlap between
DPD beads. When charged DPD beads are modeled, this
can lead to the formation of artificial ion pairs and cause
the divergence of the electrostatic potential. To avoid this
problem, Groot chose to spread out the charges using the
distribution

where re is the electrostatic smearing radius and f(r) ) 0
when r is greater than re. The expression for the potential
between two of these charge clouds is given in Appendix
A, and the representation of the potential and its correspond-
ing force with respect to the distance is shown in Figure 1.
The electrostatic field is then solved on a lattice according
to the method of Beckers et al.32 The charges are assigned
to the lattice nodes within the cell, and the long-range part
of the interaction potential is calculated by solving the
Poisson equation on the grid. Details of the charge assign-
ment can be found in Groot’s14 original article. Whereas, in
the original PPPM method, the far field was solved using a
Fourier transform, the method developed by Groot used real-
space successive overdamped relaxations. This makes the
Groot method close to the multigrid method of Sagui and
Darden.34 However, for convenience, this method will be
referred to as the PPPM method in the present work.

The electrostatic force f i
E on a charged bead i is calculated

from

where ri is the position of the charged bead i and qi is the
number of unit charges on bead i. fj(ri) is defined as

where rj is the position of the node j and the sum over n
runs over all nodes within a distance re from ri. This
function means that a charge proportional to f(r) in eq 7
is assigned to each node i and normalized such that the
sum of all of the charges within a distance re equals the
charge on the bead i. ψ(rj) is the local electrostatic field
at lattice node j.

The field ψ(rj) is calculated from the Poisson equation
expressed in reduced DPD units as

where F* is the concentration of cations minus the concen-
tration of anions per rc

3, ∇* is the gradient in reduced units,
and p(r) is the local polarizability relative to that of pure
water.

The total momentum of the simulation cell is conserved
by removing a possible residual force for each charge. This
residual force is on the order of 5 × 10-5 in reduced units
and is expressed as ∑i

Nqif i
E/N. The total force fi of eq 1 is

then modified by adding the fi
E contribution and the residual

force.
3.2. Ewald Summation (EW3DC) Method. The method

recently proposed by González-Melchor et al.15 consists
of combining the Ewald technique16 and a charge distribu-
tion for particles. In the case of an electroneutral system
formed by N particles, with each particle i carrying a point
charge qi at position ri in a volume V ) LxLyLz, the long-

fij
D ) -γωD(rij)(r̂ij · vij)r̂ij (3)

fij
R ) σωR(rij)θij

1

√δt
r̂ij (4)

γ ) σ2

2kBT
and ωD(rij) ) [ωR(rij)]

2 (5)

fij
S ) -ks(rij - r0)r̂ij (6)

f(r) ) 3

πre
3
(1 - r/re) for r < re (7)

fi
E(ri) ) -qi ∑

j

fj(ri)∇ψ(rj) (8)

fj(ri) )
1 - |rj - ri| /re

∑
n

(1 - |rn - ri| /re)
(9)

∇* · [p(r)∇*ψ] ) -ΓF* (10)
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range electrostatic interactions are decomposed into
contributions in real space and in reciprocal space

where erfc(x) is the complementary error function. R is
chosen so that only pair interactions in the central cell
need to be considered in evaluating the first term of eq
11. The functions Q(h) and S(h) are defined by the
equations

where the components of the reciprocal vector h are
defined as 2π(l/Lx, m/Ly, n/Lz) where l, m, and n take values
of 0, (1, (2, ..., (∞.

To remove the divergency of the Coulombic potential at
r ) 0, Alejandre and co-workers15 considered a Slater-type
charge distribution on DPD particles of the form

where λ is the decay length of the charge. The distribution
is normalized to q.

The magnitude of the reduced force between two charge
distribution is then given by the sum of a pairwise-additive
contribution f ij

E,R coming from the real-space term and a non-

pairwise-additive contribution f i
E,K from the reciprocal-space

term. These two contributions are given by the expressions

where Im denotes the imaginary part of the complex variable.
To remove the net dipole moment of the simulation cell,

a z-component force is added for each bead

where Mz is the net dipole moment of the simulation cell
given by ∑iqiri and V is the volume expressed in reduced
units. This contribution is the correction term from Yeh and
Berkowitz,23 which results from the plane-wise summation
method proposed by Smith.36

Within the EW3DC method, the force acting on the ith
particle becomes

The pairwise f ij
E,R force is then added to sum of the

conservative, dissipative, and random pairwise forces, whereas
fi

E,K and f i,z, which are not pairwise-additive, are added to
the force fi acting on particle i. The real parts of the force
and energy equations are shown in Figure 1. In this work,
we compare the results from these two different techniques,
and it is worth pointing out that the potentials and forces
are slightly different, as can be seen in Figure 1. In Groot’s
method, an approximate potential is derived from the
distribution of eq 7. In Alejandre et al.’s method, the potential
is exactly defined from eq 14. Following Alejandre et al., λ,
the decay length of the charge, is adjusted to bring the
potential into the closest possible agreement.

4. Calculation of the Pressure Tensor

4.1. Irving and Kirkwood (IK) Definition. The method
of Irving and Kirkwood18 (IK) is based on the notion of the
force across a unit area. The pressure tensor is then written
as a sum of a kinetic term and a potential term resulting
from the intermolecular forces. Whereas the first term is well-
defined, the potential term is subjected to arbitrariness
because there is no unique way to determine which inter-
molecular forces contribute to the stress across dA. There
are many ways of choosing the contour joining two interact-
ing particles. Irving and Kirkwood18 chose as a contour the
straight line between the two particles. Other choices are
possible and result from the lack of uniqueness in the
definition of the microscopic stress tensor. The components
of the pressure tensor37-39 in the Irving and Kirkwood
definition are expressed by

Figure 1. Electrostatic potential and force calculated by the
EW3DC and PPPM methods. For comparison, we include the
Coulombic potential and force, which diverges at r ) 0.
The x axis is expressed in standard DPD units (r/rc), whereas
the top axis gives the distance r/re. The potential and force
expressions are plotted for two equal-sign charge distributions.

U(rN) ) 1
4πε0εr[ ∑

i
∑
j>i

qiqj

erfc(Rrij)

rij
+

2π
V ∑

k*0

∞

Q(h) S(h) S(-h) - R
√π

∑
i

N

qi
2] (11)

Q(h) ) exp(-h2/4R2)/h2 (12)

S(h) ) ∑
i)1

N

qi exp(ih · ri) (13)

f(r) ) q

πλ3
exp(-2r/λ) (14)

fij
E,R ) Γ

4π
qiqj[ 2

√π
exp(-R2rij

2) + erfc(Rrij)] ×

{[1 - exp(-2
rij)][1 + 2
rij(1 + 
rij)]}
rij

rij
3

(15)

fi
E,K ) - Γ

4π
qi{2π

V ∑
h*0

Q(h)h × Im[exp(-ih · ri) S(h)]}
(16)

fi,z ) -Γ
V

Mz (17)

fi ) fi
E,K + fi,z + ∑

j*i

(fij
C + fij

R + fij
D + fij

E,R) (18)
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The first term on the right-hand side of this equation
represents the kinetic part, and the second term is the
configurational pressure calculated from the conservative
potentials. H(zi) is a top-hat function. R and 
 represent the
x, y, and z directions. θ(x) is the unit step function defined
by θ(x) ) 0 when x < 0 and θ(x) ) 1 when x g 0. A is the
surface area normal to the z axis. The distance zij between
two particles is divided into Ns slabs of thickness δz.
Following Irving and Kirkwood, particles i and j give a local
contribution to the pressure tensor in a given slab if the line
joining these crosses, starts in, or finishes in the slab. Each
slab has 1/Ns of the total contribution from the i-j interaction.
The normal component pN(zk) is equal to pzz(zk). fij in eq 19
is the pairwise force between particles i and j and sums the
conservative, dissipative, random, and bead-spring forces,
as well as the real-space contribution of the electrostatic
forces. The reciprocal contribution to the electrostatic force
is taken into account using the Harasima definition19 of the
pressure. The expressions for the local contributions to the
pressure tensor are given in Appendix B for completeness.

4.2. Method of Planes (MOP) Definition. The method
of planes22 (MOP), introduced by Todd, Evans, and Daivis,
is designed to calculate average cross-sectional pressures.
The total pressure sums the kinetic and potential contributions
as

where vR,i is the R component of the velocity of particle i
and fR,i is the R component of the total force on particle i.
The kinetic part is due to the momentum of the molecules
as they cross the area during ∆t. If, between times t and t +
∆t, particle i moves through planes, we use the sign of the
z component of the velocity to specify the direction of the
crossing. This method allows for the use of the total force
fR,i calculated either from the PPPM or EW3DC method.

When the total force fR,i can be decomposed into pairwise
contributions fR, ij, the second term of eq 20 can be written
as

When the force cannot be decomposed into pairwise
contributions (PPPM method) and the system is periodic in
all three directions, the use of the MOP methodology for
the calculation of the pressure components is not possible.

5. Results and Discussion

5.1. Bulk Electrolyte. As a first test to validate the
calculation of the pressure tensor, we consider the simple

electrolyte previously studied by Groot14 and Alejandre and
co-workers.15 The system consisted of N ) 3000 particles
in a simulation cell of volume 10 × 10 × 10. The box
contained 2804 neutral particles, 98 particles with a positive
charge of +e and 98 particles with a negative charge of -e.
The total density number was F ) 3. A typical configuration
is shown in Figure 2a. Using the appropriate scaling given
in Table C-1 of Appendix C, this system corresponds to a
salt concentration of 0.6 M. The interaction parameters for
the conservative, dissipative, and random forces were aij )
25.0, λ ) 4.5, and σ ) 3.0, respectively. The time step δt
was equal to 0.02. Each simulation for these systems
consisted of an equilibration period of 100 000 steps,
followed by an acquisition period of 300 000 steps. The
length of the production phase is about 1 µs. The periodic
boundary conditions were applied in all three directions.
Because the calculation of the pressure cannot be performed
with a non-pairwise-additive force (PPPM method) in a three
dimensionally periodic system, we can study only the 3D
bulk electrolyte with the EW3DC method. We performed
these simulations as a reference for the works described in
section 5.3, where the box simulations represent the homo-
geneous phase in the middle of the cell.

Figure 3a shows the kinetic term for the pressure calculated
according to the IK definition along the z direction in the
bulk electrolyte. We observe that this profile is constant with
a mean value of 3.11 ( 0.01. This corresponds to an average
temperature of 0.99 ( 0.01, which agrees well with the input
temperature of 1.0. This means that the incorporation of the
electrostatic interactions allows for very accurate temperature
control with the use of the velocity-Verlet algorithm and a
time step of 0.02. Figure 3b represents the normal component
of the configurational pressure tensor along the z direction
calculated according to the IK and MOP approaches. As
expected from a system mechanical equilibrium, the profile
is constant, and the average pressure of pzz calculated over
the different z positions is equal to 20.7 ( 0.1 for the two
definitions. The profiles of the real and reciprocal contribu-
tions of the Ewald summation method shown in Figure 3c
are identical within the statistical fluctuations for the IK and
MOP methods. The electrostatic contributions of -0.013
DPD units are relatively small compared to the magnitude
of the configurational pressure. The value of pressure is
determined from the contributions between ions of the same
charge (0.11) and between ions of opposed charges (-0.123).
The electrostatic interactions are small because of the strong
cancellation between different ion pairs.

5.2. Electrolyte Embedded between Two Planar
Surfaces. We now simulate the electrolyte between two
planar solid surfaces composed of three layers of DPD
particles tethered by springs to lattice points in a regular array
(see Figure 2b for a typical configuration). Each surface was
composed of a 17 × 18 layer of wall particles. The cell
dimensions and the features of the system are given in Table
1. The separation distance between the two walls was 11.
This value was chosen to reproduce a local value of the
density number in the middle of the box similar to that of
the bulk electrolyte system described in section 4.2. The time
step was fixed at 0.02, and the simulations consisted of an

pR
(z) ) 1
V〈∑

i)1

N

H(zi)mivi,Rvi,
〉 +

1
A〈 ∑

i)1

N-1

∑
j>i

N

(rij)R(fij)

1

|zij|
θ(z - zi

zij
) θ(zj - z

zij
)〉 (19)

pRz(z) ) 1
A ∑

i)1

N 〈mivR,i sgn(Vi,z)

δt 〉 + 1
2A〈 ∑

i)1

N

fR,i sgn(zi - z)〉
(20)

1
A〈 ∑

i

N-1

∑
j)i+1

N

fR,ij[θ(zi - z)θ(z - zj) - θ(zj - z)θ(z - zi)]〉
(21)
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equilibration period of 100 000 steps, followed by an
acquisition period of 300 000 steps. Periodic boundary
conditions were applied in all three directions. The simulation
box dimension was elongated in the z direction by adding
an empty space of at least twice the space of the fluid-
occupied region. We added a correction term to remove the
forces due to the net dipole of the periodically repeating
slabs.17,23,24 The reciprocal vector hz

max was increased (see
Table C-1 in Appendix C) to allow for the elongation of the
cell in the z direction.

When the electrostatic interactions are calculated with
EW3DC, the average value of the normal component of the
configurational pressure calculated in the middle of the pore
from the profiles of Figure 4a is 20.7 ( 0.1 for the IK and
MOP methodologies. This value agrees very well with that
calculated in the bulk electrolyte. Figure 4b shows the profiles
of the real and reciprocal parts of the normal pressure
components calculated from EW3DC. We observe flat
profiles in the middle of the pore in agreement with a
homogeneous distribution of the ions along this direction.
From these profiles, we deduce an average value of -0.012

( 0.001 in the center of the box for the total electrostatic
pressure. This value matches reasonably well with that
calculated (-0.013) by EW3DC in the bulk electrolyte
system. This result validates the use of a local definition for
the pressure calculation within the supercell approximation.
Additionally, we find that the sum of the kinetic, configu-
rational, and electrostatic contributions to the pressure tensor
lead to a completely flat profile (not shown here) as expected
for a system at mechanical equilibrium.

In addition, the profiles of the configurational pressure in
Figure 4c calculated from simulations using the PPPM
method are also in line with those resulting from the EW3DC
technique. The electrostatic pressure calculated according to
the PPPM method is slightly different from that coming from
the EW3DC method, with an average difference of 6%. The
profiles of the electrostatic contributions to the normal
pressure are shown in Figure 4d. This difference in the
pressure values can be attributed to the fact that the
electrostatic force used in EW3DC is slightly different from
that used in the PPPM method, as shown in Figure 1.
However, from these profiles, we can conclude that the

Figure 2. Typical configurations of the three simulated systems. The solvent particles, the anions or polymer beads, and the
counterions are represented in green, blue, and red, respectively.
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mechanical properties of the electrolytes between the two
plates are very similar when they are calculated by EW3DC
or by PPPM.

Parts a and b of Figure 5 show the two-dimensional radial
distribution functions between solvent-solvent and equal and
unequal ion pairs from simulations performed using the
EW3DC and PPPM methodologies. These two-dimensional

distribution functions were calculated in the middle of the
cell in a slab of width 0.3. For each case, we include for
comparison the three-dimensional pair correlation functions
calculated in the bulk electrolytes. First, we observe that the
two- and three-dimensional radial distribution functions are
well-matched, indicating that the structure in the middle of

Figure 3. (a) Kinetic and (b) configurational pressure components along the normal to the surface for the bulk electrolyte system.
Contributions of the normal component of the pressure tensor from the real (pE,K) and reciprocal (pE,R) spaces.

Table 1. Dimensions of the Box in Reduced Units and
Number of Particles as a Function of the System

system Lx/rc Ly/rc Lz/rc h Nsolvent N+
a N-

a

bulk electrolyte 10 10 10 2804 98 98
bulk electrolyte
between surfaces

10.5 9.6 35 11 2804 98 98

polymer brushb

fc ) 0 16.7 6.4 152 50 13 863 0 0
f ) 0.5 16.7 6.4 152 50 12 783 1080 0
f ) 1.0 16.7 6.4 152 50 11 703 2160 0

a N+ and N- represent the numbers of cations and anions,
respectively. b In a polyelectrolyte brush, the number of
counterions N+ is equal to fNpNb. c Charge fraction.

Table 2. Height of the Polymer Brush (〈zm〉), Height of the
Counterion Layer (〈zci〉), and Average Bond Length in the
Polymer Chain (〈b〉) Expressed in Reduced Unitsa

fraction of charge (f ) method 〈zm〉 〈zci〉 〈b〉

Neutral Polymer Brush
0 11.0 0.97

Polyelectrolyte Brushes
0.5 PPPM 15.1 16.0 1.05
0.5 EW3DC 15.1 16.1 1.06
1.0 PPPM 18.9 18.9 1.14
1.0 EW3DC 19.0 19.1 1.15

a Heights calculated from the first moment of the density
profiles.
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the pore returns to that of the bulk. The two-dimensional
curves are noisier because of the statistics. These distributions
functions are also in line with those calculated in previous
works by Alejandre and co-workers15 and Groot.14

The calculation of the pressure components of the con-
figurational and electrostatic parts in a system where a
physical boundary prohibits passage of molecules in the third
direction allows for the verification that the local definitions
used for the pressure calculation (MOP and IK) are be

relevant within the EW3DC and PPPM techniques. This was
confirmed by comparing the structure and the mechanical
properties of the central zone between the two surfaces with
those of the three-dimensional bulk electrolytes.

This system allowed the relative speeds of the EW3DC
and PPPM techniques to be compared. We simulated a
confined polyelectrolyte of DPD particles between two walls.
Initially, all of the particles were uncharged, and we
performed a number of different simulations increasing the

Figure 4. (a) Normal component (pzz
C ) of the configurational part of the pressure calculated according to the IK and MOP definitions

using the EW3DC method, (b) normal component of the contributions of the real (pE,K) and reciprocal (pE,R) spaces calculated
with the IK and MOP definitions using the EW3Dc method, (c) normal component (pzz

C ) of the configurational part of the pressure
calculated with MOP using both the PPPM and EW3DC methods, and (d) total normal component of the electrostatic contribution
calculated using the MOP definition within the EW3DC and PPPM methods. The system consisted of an electrolyte between
two surfaces.

Figure 5. Two-dimensional and three-dimensional radial distribution functions for different ion pairs. The two-dimensional
distribution functions were calculated in the middle of the box in a slab with a width of of 0.3rc, whereas the three-dimensional
distribution functions were calculated in the bulk electrolyte.
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number N of ion pairs to 2000 while keeping the total number
of particles fixed. Figure 6a shows the run time for one time
step of a DPD simulation as a function of the number of ion
pairs. The execution time for one time step includes only
the calculation of the electrostatic force. This curve shows
that the PPPM method becomes more efficient than EW3DC
when the number of ion pairs is greater than 100. We verified
that the EW3DC and PPPM methods scale as O(N3/2)40 and
O(N log N),40 respectively. For the range of the number of
ion pairs investigated here, the PPPM method performed
faster than EW3DC for the study of polyelectrolytes with
the DPD method. This is in line with Groot’s observation14

that the time used to distribute the charge, solve the field
equation, and calculate the electrostatic forces is small
compared to other elements of a time step. In Figure 6b, we

show the times for the calculation of the reciprocal- and real-
space terms of the electrostatic force in the EW3DC method.
As expected from previous works,40,41 the computation times
for the calculation of the reciprocal- and real-space terms
grow as N2 and N, respectively. For the set of parameters
(see Tables 1 and C-1) and numbers of ion pairs smaller
than 1000, the computational cost of the calculation of the
electrostatic forces with EW3DC comes from the calculation
of the reciprocal-space term.

5.3. Polyelectrolyte Brushes. 5.3.1. Mechanical and
Structural Properties. Now that we have verified the
consistency of the calculation of the local pressure within
the supercell approximation in the EW3DC and PPPM
methodologies, we focus on the calculation of the mechanical
properties of a single polyelectrolyte brush. The system
consisted of two planar solid surfaces composed of three
layers of 324 DPD particles. The two surfaces were
positioned at the top and bottom of the simulation cell. One
of the two surfaces was coated with Np ) 108 polymer chains
that were randomly grafted by a harmonic force acting
between the end particles of the chains and the particles of
the first layer of the wall. Each chain contained Nb ) 20
polymer beads. The surface coverage was defined as Fa )
Np/(LxLy). In our system, one-third of the wall particles of
the third layer were connected to the first beads of the
polymer chains. The different charge fractions f were 1
(completely negatively charged), 0.5 (half fully charged), and
zero (neutral). To preserve electroneutrality, there are fNpNb

counterions. The number of solvent particles was adjusted
so that the overall reduced density between the two walls
was close to 3. The cell dimensions are given in Table 1,
and a representation of the simulation geometry is shown in
Figure 2c. The aij parameters were set to 25 for all
interactions. The polymer brush was then modeled in
athermal solvent conditions. To respect the supercell ap-
proximation, the simulation cell was elongated along the z
direction (see Table C-1 in Appendix C), and the reciprocal
vector hz

max ) 17 was changed accordingly. The time-step
was fixed at 0.06, and the simulations consisted of an
equilibration period of 100 000 steps, followed by an
acquisition period of 300 000 steps.

Figure 7a shows the normal components of the total
pressure calculated along the z direction according to the
IK and MOP methods with the EW3DC methodology for
the system with f ) 0.5. Figure 7d compares the profiles of
the total pressure calculated according to the MOP with
EW3DC and PPPM. First, we found that the mechanical
equilibrium is recovered for polyelectrolyte brushes with a
very flat profile of the pressure across the simulation cell.
This homogeneous profile of the normal component is
independent of the method used for the pressure calculation
and of the method used for the calculation of the long-range
electrostatic interactions. Figure 7b shows the profiles of the
normal component of the configurational (left axis) and
electrostatic (right axis) pressure. Whereas the total pressure
(left axis) exhibits a flat profile, one observes that the
configurational part shows a positive contribution close to
the grafted surface that is compensated by a symmetric
negative value of the electrostatic pressure. One can observe

Figure 6. Run times (in milliseconds) for one time step (a)
in the calculation of the electrostatic force and (b) in the
calculation of the real- and reciprocal-space terms of the
electrostatic force. The average time was calculated from a
DPD simulation carried out over 10 000 steps. The total
number of particles was fixed at 16 000. The number of ion
pairs increased from 0 to 2000, and the number of solvent
particles decreased from 16 000 to 12 000. The system was
an electrolyte between two plates.
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the same features with the PPPM methodology with slightly
different profile shapes. The total pressures calculated by
EW3DC and PPPM are identical. Figure 7c shows the
profiles of the electrostatic pressure obtained by separating
the real and reciprocal parts with the EW3DC method. The
total electrostatic pressure is then compared to that calculated
with the PPPM method. The slight differences between the
pressure profiles obtained with EW3DC and PPPM are due
to the fact that the force used with EW3DC is shifted to
smaller distances compared to that used with PPPM (see
Figure 1). Figure 7f shows that the total pressure decreases
as the fraction of charges changes from 1 to 0.5.

Figure 8a shows the monomer density profiles Fm(z) as a
function of the distance from the grafting surface for three
different fractions of charges (neutral, half-charged, and fully
charged). First, we distinguish no difference in the density
profiles obtained by the EW3DC and PPPM methods. We
observe that, when the fraction of charge is increasing, the
brush extends farther in the direction normal to the surface,
although the profile remains parabolic. The electrostatic

contribution to the pressure is relatively small compared to
that of the configurational part, as the presence of the
electrostatic interactions induces a strong stretching of the
chains in the z direction. The repulsive electrostatic interac-
tions between polymer chains and between beads within the
chains tend to swell the brush and to straighten the polymer
chain, respectively. These effects are lessened by the
counterions that act to screen the charged monomer interac-
tions. The decomposition of the electrostatic pressure into
monomer-monomer, counterion-counterion, and mono-
mer-counterion contributions yields values of 0.831, 0.836,
and -1.691, respectively, for f ) 0.5 and 2.717, 2.720, and
-5.482, respectively, for f ) 1.0. The resulting total
electrostatic pressure within the brush is then equal to -0.024
for f ) 0.5 and -0.045 for f ) 1.0 in reduced units. This
calculation shows the ability of the counterion to screen the
charged monomer interactions. However, the reduction in
entropy due to the presence of counterions in a small volume
occupied by the polymer chains must be compensated by
extending the chains against their elasticity. The competition

Figure 7. Normal component of the pressure (pzz) as a function of the distance from the grafting surface calculated according
to the MOP definition for (a) the total pressure calculated using EW3DC (included for comparison is the pressure profile calculated
using IK); (b) the electrostatic (pE), configurational (pC), and total parts calculated using EW3DC; (c) the real-space (pE,R) and
reciprocal-space (pE,K) contributions with the total electrostatic contribution calculated according to the EW3DC and PPPM methods;
(d) the total pressure calculated using the EW3DC and PPPM methods; (e) the electrostatic (pE), configurational (pC), and total
parts calculated using PPPM; and (f) the total pressure component for two different fractions of charges f. The configurational
and total parts of the pressure in parts b and e are represented on the left axis, whereas the electrostatic pressure is represented
on the right axis.
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among the entropy, Coulomb interactions, and chain elasticity
is complex and is difficult to consider analytically in the
theoretical predictions of polylectrolytes properties. To
measure the extension of the brush, we calculated the average

heights of the brush 〈zm〉 and of the counterion layer 〈zci〉
from the first moment of the density profiles of monomers
and counterions as

where Fm(z) and Fci(z) are the density profiles of the
monolayer and the counterions, respectively. The factor of
2 takes into account the fact that the brush height is twice
the first moment when the monomer density profile is
uniform inside the brush. The different brush heights are
reported in Table 2, along with the average distance 〈b〉
between neighboring beads within the polymer chain. This
table highlights that the brush height is increased by 40%
and 70% with respect to that of a neutral brush when the
fractions of charges are 0.5 and 1.0, respectively. This
elongation of the chain is reflected in part in the increase of
the bond length in the polymer chain. This is allowed in
part because of the soft potential used for the bond between
neighboring beads (see eq 6). For the fully charged polymer
chains, a brush height of 19 indicates that the chains are
stretched to about 86% of their contour length defined from
the limiting value for Nb〈b〉 of 22 for a fully extended chain
structure.

Part b of Figure 8 shows the density profiles of the polymer
beads and the counterions. Interestingly, this figure empha-
sizes that the profile of the polymer beads is coincident with
that of the counterions. This indicates that the counterions
are mostly confined in the brush layer. The thickness of the
layer of the counterions calculated from the first moment of
the density profiles is listed in Table 2. As expected from
the density profiles, the height of the counterion layer is very
close to the brush height. It then becomes important to check
the local electroneutrality across the brush by plotting the
sum of the charges of the counterions and the polymer beads
along the z direction. We note that the local eletroneutrality
is satisfied in the direction perpendicular to the surface over
almost the total brush height with two exceptions. The first
relates to the local charge for z > 20 due to the layering of
the grafted monomers close to the surface. The region close
to the surface is not shown in part c of Figure 8. We also
observe in the region close to the ends of the grafted chains
a depletion of counterions with a negative local net charge,
followed by a zone rich in counterions with a positive local
charge. This leads to the formation of a local dipole. This
has already been observed in the simulation of polyelectro-
lytes.30,42 We also note that the electric properties in the
brush layer are reproduced in the same way with the EW3DC
and PPPM methodologies.

Figure 9a depicts the polyelectrolyte-ion pair distribu-
tion p(r), where r corresponds to the separation distance
between the ion and the closest polyelectrolyte bead. The
distributions are normalized according to 2π∫0

∞rp(r) dr )
1. This figure shows that these distributions are centered
around 0.6 and 0.7 when the degree of charge decreases
from 1.0 to 0.5. When the polymer chains are fully
charged, the electrostatic interactions are stronger, and the

Figure 8. Monomer density profiles of the single polyelec-
trolyte brush calculated with different degrees of charged
monomers.

〈zm〉 ) 2
∫0

∞
zFm(z) dz

∫0

∞
Fm(z) dz

and 〈zci〉 ) 2
∫0

∞
zFci(z) dz

∫0

∞
Fci(z) dz

(22)
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counterions are further trapped inside the chains to screen
the charged monomer interactions. The resulting bead-
counterion separation distance is then reduced. This figure
also shows that there is a strong correlation between
polyelectrolyte beads and counterions. The result is an
inhomogeneous distribution of the counterions and con-
trasts with Pincus’ theory,43 which assumes that counter-
ions form an ideal gas. Part b of Figure 9 shows the
distribution of the distance between neighboring beads in
the polymer chains and confirms the fact that the average
bond length increases with the strength of the Coulomb
interactions. These two structural properties illustrate that
the entropic pressure of the confined counterions stretches
the chains against their elasticity.

5.3.2. Scaling Properties. The basic behavior of poly-
electrolyte brushes can be understood on the basis of
simple scaling theory. This rationalization through the use

of simple scaling arguments is sometimes useful, but the
approximations used (shape of the monomer density
profiles, strength of the electrostatic interactions, etc.) have
not been validated by molecular simulation or experiment.
The Bjerrum length, given by λB ) e2/(4πkBTε0εr),
characterizes the length scale at which the electrostatic
interaction is equal to the thermal energy kBT. According
to the parameters used in this work, the Bjerrum length
is equal to 1.11 ≡ 7.16 Å. The dimensionless Manning
ratio44-46 is defined as λB/〈b〉, where 〈b〉 is the average
bond length distance between beads in the polyelectrolyte
chain. In Manning’s theory, the condensation of counter-
ions occurs at λB/〈b〉 )1. The values calculated for the
bond length lead to values of the Manning ratio very close
to 1 and are in line with the counterion condensation
observed in our simulations. The degree of condensed
counterions can be estimated from Figure 9a by assuming
them to be condensed if the polyion-counterion distance
is smaller than λB. This counterion condensation is 97%
with f ) 0.5 and f ) 1. The Debye screening length
associated with the counterions is defined as λD )
1/(4πλBcci)1/2, where cci can be estimated from the average
density of counterions inside the brush. This parameter,
defining the scale over which mobile charges are screened,
is equal to 0.25 and 0.32 when the charge fraction is 0.5
and 1.0, respectively. This value, which is smaller than
the bond length, explains in part why the counterions are
trapped in the brush layer. Within the range of parameters
used, the simulated brush is in the strong-charging and
strong-streching limits. As a consequence, the model of
polyelectrolyte brushes used follows the nonlinear osmotic
brush regime.47 This regime47 combines the high-streching
(nonlinear) version of the chain elasticity with the
nonlinear entropic effects of the counterions inside the
brush. This is also the case for previous molecular simu-
lations of strongly charged polyelectrolyte brushes.30,31,42,48

Another typical length in the theory of polyelectrolyte
brushes is the Gouy-Chapman length, λGC, defined as
1/(2πλBNbfFa), where Nb and Fa are the polymer chain
length and the grafting density, respectively. This length
defines the height at which counterions are effectively
bound to a surface of charge density of efNbFa.

43 For a
fully charged brush and a strong grafting density, the
Gouy-Chapman length is on the order of 0.015 ≡ 0.1 Å
and can increase up to 0.015 ≡ 0.1 Å for higher grafting
densities. Within the nonlinear osmotic brush regime,
the height of the counterion layer H is equal to the brush
height plus 3λGC/2. The weak values of λGC mean that the
height of the brush is the same as that of a counterion
layer with a high concentration of counterions inside the
brush. It will be very interesting to investigate the
dependence of the brush height on the grafting density
within this regime, but we will consider this in a future
work.

6. Conclusions

We have performed mesoscale modeling of different
electrolyte systems: a bulk electrolyte, an electrolyte
embedded between two surfaces, and a single polyelec-

Figure 9. (a) Ion-polyelectrolyte distribution function calcu-
lated according to the EW3DC and PPPM methods for a fully
charged polymer chain and a half-charged polymer chain,
where r is the separation distance between polyelectrolyte
bond and counterion, and (b) bead-bead distribution function
between connected beads within the polymer chain as a
function of the separation distance.
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trolyte brush. We have used the dissipative particle
dynamics method to capture the physics of these complex
systems at length and time scales that are outside the
ranges of standard molecular simulations. Two methods
were established recently for the calculation of the
electrostatic interactions in the DPD formalism. The first
method, initially introduced by Groot,14 is an adaptation
of the particle-particle particle-mesh (PPPM) method. The
second method, initially developed by Alejandre and co-
workers,15 consists of using the standard Ewald summation
method with charge distributions on particles to avoid the
formation of artificial ion pairs (EW3DC).

We used the supercell approximation to allow the use
of the three-dimensional EW3DC and PPPM methods in
systems presenting a finite length along a given direction.
We used two different definitions for the calculation of
the local pressure. The Irving and Kirkwood definition is
well-adapted for pairwise-additive forces and can be
straitforwardly used with the EW3DC method. The PPPM
method does not give a non-pairwise-additive electrostatic
force, and the calculation of the local pressure in this
method can be performed with the method of planes
(MOP). We showed that the different techniques EW3DC
and PPPM give similar profiles for the normal component
of the pressure tensor for the configurational and electro-
static contributions. We also showed that the use of the
supercell approximation with appropriate definitions of the
pressure tensor allows for the calculation of the local
pressure in agreement with that expected from a bulk
electrolyte at the same density.

The calculation of the local pressure in a single
polyelectrolyte brush demonstrated a positive configura-
tional contribution to the pressure from the brush and a
similar negative electrostatic part from the brush. The
profile of the total pressure along the direction normal to
the surface is flat, as expected for a system at mechanical
equilibrium. We completed the study of the polyelectrolyte
brush by calculating the heights of the brush and the
counterion layer. We found that the counterions are mostly
trapped in the brush and that the condensation of coun-
terions increases with the fraction of charged monomers.
The stretching of the polymer chain was found to about
85% of its contour length. These results were expected
from the values of the dimensionless Manning ratio and
the Debye screening length of the counterions. The weak
value of the Gouy-Chapman length indicates that the
height of the polymer brush must be equal to that of the
counterion layer. The system model simulated here is in
the strong-charging and strong-stretching limits and fol-
lows the nonlinear osmotic brush regime.

We also showed that the incorporation of the electro-
static interactions through the EW3DC and PPPM methods
into the DPD methodology allows the main properties of
a single strongly stretched polyelectrolyte brush made of
strongly charged polymers to be recovered. This prelimi-
nary study calls for further investigation of the dependence
of the brush height on the surface coverage, fraction of
charge, and salt concentration. It is also interesting to see
that an accurate calculation of the local pressure can be

carried out in such systems at a mesoscopic scale. This
represents an important step for the next calculation of
the frictional forces in polyelectrolyte brushes under shear.

Additionally, the PPPM method is more efficient in CPU
time than the EW3DC method as the number of charges
increases. This makes the PPPM method a powerful and
attractive method for the mesoscale modeling of polyelec-
trolytes.
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Appendix A. Expression of the Electrostatic
Potential in the DPD Method with the PPPM
and EW3DC Techniques

The empirical expressions of the electrostatic potential used
in the PPPM method14 are given by

The potential and the corresponding force are represented
in Figure 1.

The electrostatic potential used in the DPD method with
the EW3DC technique15 is given by

and its corresponding force is given by

The expressions for the energy and forces are represented
in Figure 1 for comparison with those used in the PPPM
method.

Appendix B. Calculation of the
Electrostatic Contributions to the Pressure
of the EW3DC Method with the IK and
Harasima Definitions

The contribution of the real space to the local pressure is
given by
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and that of the reciprocal space is given by

where H(zi) is a top-hat function defined as

Appendix C. DPD Parameters, Physical
Length, and Time Scales

In the simulations, the particle mass, temperature, and
interaction range were chosen as units of mass, energy,
and length, respectively; hence m ) kBT ) rc ) 1. The
unit of time, τ, then becomes rc(m/kBT)1/2. The real length
rc can be estimated from the volume of a DPD bead. If
Nm represents the number of water molecules within a
DPD particle, then rc ) (F*NmVm/NA)1/3, where F* is the
reduced density of DPD particles, Vm ) 18 cm 3 mol-1,
and NA is Avogadro’s number. Groot and Rabone8 and
Groot14 used Nm ) 3 and a reduced density of 3. Using
such values, rc ) 6.46 Å. Making the Poisson equation
dimensionless14 implies that the coupling constant Γ is
given by e2/(kBTε0εrrc), where e is the electron charge, ε0

) 8.85418782 × 10-12 C2 J-1 m-1 is the dielectric constant
of a vacuum, and εr ) 78.3 is the relative permittivity of
water at 298 K. Using rc ) 6.46 Å and Γ ) 13.87, to
match the interaction between two charge clouds at r ) 0
within the PPPM and EW3DC methodologies, the 

parameter is 0.929.15 As already dicussed by Groot and
Rabone,8 the time scale is fixed by matching the diffusion
constant of water. For the repulsion parameter a ) 25,
we found that the natural unit of time τ is 160 ps.

The complete list of DPD parameters in reduced units is
provided in Table C-1.
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Abstract: We present a partial-differential-equation (PDE)-constrained approach for optimizing
a molecule’s electrostatic interactions with a target molecule. The approach, which we call
reverse-Schur co-optimization, can be more than 2 orders of magnitude faster than the traditional
approach to electrostatic optimization. The efficiency of the co-optimization approach may
enhance the value of electrostatic optimization for ligand-design efforts. In such projects, it is
often desirable to screen many candidate ligands for their viability, and the optimization of
electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis
for electrostatic optimization derives from linear-response theory, most commonly continuum
models, and simple assumptions about molecular binding processes. Although the theory has
been used successfully to study a wide variety of molecular binding events, its implications
have not yet been fully explored, in part due to the computational expense associated with the
optimization. The co-optimization algorithm achieves improved performance by solving the
optimization and electrostatic simulation problems simultaneously and is applicable to both
unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles
other well-known techniques for solving optimization problems with PDE constraints. Model
problems as well as realistic examples validate the reverse-Schur method and demonstrate
that our technique and alternative PDE-constrained methods scale very favorably compared to
the standard approach. Regularization, which ordinarily requires an explicit representation of
the objective function, can be included using an approximate Hessian calculated using the new
BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method.

1. Introduction

The problem of optimizing electrostatic interactions is a task
of particular importance in molecular design. One asks
whether a candidate designed molecule, or ligand, is optimal
for binding the target molecule, which is called a receptor,

and if not, what chemical modifications might be made to
improve binding affinity or specificity. A variety of factors
contribute to the binding free energy, including conforma-
tional entropy, although often the contributions are dominated
by packing effects and electrostatics. Although the short-
range packing interactions can be conceptualized relatively
easily, analysis of the electrostatic component is more
complex. The electrostatic component of the binding free
energy can be particularly nonintuitive due to the interac-
tions’ long range and the trade-off between favorable
ligand-receptor interactions in the bound state and the
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unfavorable desolvation penalties paid on binding.1 These
nonintuitive features have led to the important but challeng-
ing goal of designing optimal electrostatic interactions as
an approach to designing useful molecular binding partners.1,2

Questions in molecular biology regarding the evolution of
biomolecules, whether to serve specific functions or to bind
targets with high affinity and specificity, may also be
interpreted as questions regarding optimization of a particular
objective function.2–4

Lee and Tidor presented the first work describing the
possibility of optimizing electrostatic interactions between
molecules,1 showing that linear-response theory and simple
assumptions about binding eventssin particular, that the
ligand binds rigidly and that no charge redistribution occurs
on bindingsgive rise to a quadratic model for the electro-
static contribution to the binding free energy. Their primarily
analytical study used a multipole-based representation of the
ligand charge distribution and spherical geometries for the
unbound ligand and the ligand-receptor complex. Chong
et al. applied this theory to an idealized model of the protein
barnase and found that small sets of biochemically reasonable
charge distributions resembled the computed optimal charge
distribution.5 Kangas and Tidor later proved that the elec-
trostatic component of the binding free energy is a convex
function under reasonable assumptions and extended the
theory to address nonspherical geometries, alternative basis
sets, and measures of binding specificity.6–8

Following these developments, Lee and Tidor studied the
interactions between two proteins, the extremely tight-binding
partners barnase and barstar;3,9 their analysis suggested that
the inhibitor barstar is electrostatically optimized to bind to
the enzyme barnase. In another application of the optimiza-
tion theory, Kangas and Tidor studied the enzyme B. subtilis
chorismate mutase.2 This investigation indicated a particu-
larly promising modification to improve the binding affinity
of a transition-state analog inhibitorsthe replacement of a
carboxylate group by a nitro group. Mandal and Hilvert
synthesized the proposed inhibitor; in agreement with the
computational analysis, the resulting ligand bound the
enzyme more tightly and was in fact the tightest-binding
chorismate mutase inhibitor reported to date in the litera-
ture.10

Several groups have applied the optimization theory to
study a number of other molecular systems. Sulea and
Purisima have studied cation-protein binding, the optimiza-
tion of protein-protein interfaces, and the use of the charge
optimization framework as a means to identify “hot spots”
for binding.11,12 Sims et al. studied two protein kinases,
protein kinase A (PKA) and cyclin-dependent kinase 2
(CDK2), and several inhibitors.13 Green and Tidor have
applied charge optimization theory to two systems.4,14 In one
study, they demonstrated that glutaminyl-tRNA synthetase
is optimized for its substrates;4 more recently, they proposed
optimization-theory-based mutations to 5-Helix, which in-
hibits HIV-1 membrane fusion by gp41.14 Armstrong et al.
have studied several inhibitors of neuraminidase and the
relation between charge optimization and lead progression.15

Gilson has explored the theory allowing the optimization of
flexible ligands.16 Schreiber and collaborators have also

focused on optimizing ligand-receptor electrostatics.17,18

Brock et al. have used a theory similar to Lee and Tidor’s
in their analysis of protein-protein complexes.19

The computational expense associated with optimization
has limited the broad application of the electrostatic-
optimization theory. Traditional approaches to optimization
begin with an explicit representation of the second-derivative,
or Hessian, matrix or a means by which to multiply a vector
by the Hessian. For electrostatic optimization problems, a
large cost associated with calculating the Hessian matrix
explicitly is the successive simulation of the bound and
unbound systems with each of the point charges (more
generally, the basis functions) used to describe the ligand
charge distribution.1 The cost to form the Hessian must be
paid before optimization can be performed, and it scales
essentially linearly with the number of basis functions for
reasonably sized problems. Lee and Tidor emphasized, in
their original optimization paper, the importance of using
sufficiently complete basis function sets to achieve conver-
gence to the optimum affinity.1 However, the fixed-location
point-charge basis sets used in most electrostatic optimization
work offer little insight into geometric sensitivity or to basis-
set completeness. The availability of more efficient compu-
tational methods may therefore enable not only greater
numbers of ligands to be optimized in design efforts but also
a more thorough exploration of the optimization theory itself
and the extent to which biology may have employed
electrostatic optimization to achieve desired binding affinities
and specificities.

This paper presents a new, highly efficient approach, which
we call reVerse-Schur co-optimization, to solving the elec-
trostatic optimization problem. The theory and implementa-
tion of efficient methods for optimization problems con-
strained by partial differential equations (PDEs) have become
a progressively more important research topic over the past
several years,20–23 and we show that electrostatic optimization
is actually a special case of a PDE-constrained optimization
problem. Most PDE-constrained optimization techniques
follow one of two approaches. All-at-once approaches
incorporate the PDE state variables (for electrostatic opti-
mization, the electrostatic potentials in the bound and
unbound states) directly into the optimization problem. The
state variables together with the decision variables (the point
charge values) satisfy the PDE, which is included as an
equality constraint.22–25 Such techniques are often termed
simultaneous analysis and design (SAND) approaches.20 The
second general strategy, sometimes called a black-box
approach, hides the PDE from the optimization algorithm.23

The nested analysis and design (NAND) paradigm is a black-
box method,26,27 as are techniques that directly invert the
PDE constraint before initiating optimization. The calculation
of an explicit Hessian is effectively a black-box approach,
because the mathematical details of the PDE simulation are
entirely hidden from the optimization procedure. In electro-
static optimization problems, the decision variables and the
state variables are related by a linear matrix equation. As
we show in this paper, this linearity allows optimal charge
distributions to be found without calculating the Hessian
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explicitly and without using the discretized PDE as an
equality constraint.

To demonstrate the co-optimization method’s performance
on problems of therapeutic relevance, we have applied the
optimization methodology to two protein–small-molecule-
ligand complexes. The first is a complex between HIV-1
protease and the small-molecule inhibitor darunavir (TMC-
114).28 HIV-1 protease is an essential enzyme in the life
cycle of HIV, and small-molecule inhibitors of the protease
have been successful components of combinatorial strategies
for treating HIV infection.29,30 The second protein-ligand
system studied is a complex between the protein cyclin-
dependent kinase 2 (CDK2) and a small-molecule inhibitor.31

The CDK family of proteins are involved in regulating cell
growth, and inhibitors of these enzymes are potential cancer
therapies.32,33 It may be possible to use charge optimization
to identify regions of these small-molecule ligands that are
suboptimal for binding their protein target, and chemical
modification at these locations may lead to improved
inhibitors.

The following section describes a linear-response con-
tinuum model for biomolecule electrostatics, two boundary-
integral formulations of the PDE problem, boundary-element
methods (BEM) for solving the integral equations numeri-
cally, the optimization problem based on the linear-response
model, and methods for convex quadratic optimization.
Section 3 presents the new reVerse-Schur co-optimization
method. In addition, we describe two more widely used
approaches to PDE-constrained optimization problems, par-
tially to highlight differences between these methods and
the reverse-Schur approach and partially to illustrate that the
performance gains are not necessarily specific to the reverse-
Schur method. Techniques for constrained co-optimization
are also presented. Important details of the implementations
regularization methods and preconditioningsare described
in Section 4. In Section 5 we present computational results
that validate the method, demonstrate its computational
efficiency, and show that realistic problems in biomolecule
design can be studied using PDE-constrained optimization
methods. Section 6 summarizes the paper and suggests future
research directions.

2. Theory

2.1. A Linear-Response Model for Estimating the Electro-
static Contribution to the Free Energy of Binding Between
Biomolecules. Free energies of binding are commonly esti-
mated using a thermodynamic cycle such as that shown in
Figure 1.34 The lower set of images represents the ligand,
receptor, and ligand-receptor complex in aqueous solvent,
and the lower horizontal arrow represents the binding free
energy ∆Gbind

0 to be estimated. The unbound ligand and
receptor and the bound complex are assumed to be at infinite
dilution. The upper cartoons represent the three species in a
homogeneous low-dielectric environment with zero ionic
strength throughout, and the horizontal arrow denoted by
∆Gbind

0, ref represents the free energy change on binding in the
low-dielectric environment, the electrostatic component of
which is simply the ligand-receptor Coulomb-interaction

energy. The three steps illustrated by vertical arrows involve
the transfer of a molecule or complex between the low-
dielectric environment and the solvent. The difference in a
molecule’s free energy as it is transferred into solvent from
the reference low-dielectric medium is called its solvation
free energy,34 and this free energy is frequently decomposed
into nonpolar and electrostatic terms so that

In many models, the nonpolar free energy ∆Gsolv
0, np is

proportional to the molecular surface area, although recently
more sophisticated models have been developed and param-
etrized (see, for example, refs 35 and 36). The electrostatic
component ∆Gsolv

0, es is often estimated using a macroscopic
continuum electrostatic model,34–37 shown in Figure 2.

The molecule-solvent boundary, denoted as Γ in Figure
2, is taken to be the Richards molecular surface38 and
separates the molecular interior, region I, from the solvent
exterior, region II. The interior is modeled as a homogeneous
dielectric with low dielectric constant εI and a charge
distribution F(r); in this work, we assume that the charge
distribution consists of nc discrete point charges, the ith of
which is located at ri and has charge qi. For many biomol-
ecules, nc ranges from a few dozen to several thousand. The
electrostatic potential in region I, �I(r), satisfies a Poisson
equation

Figure 1. A thermodynamic cycle for estimating binding free
energies. The shaded regions on the lower set of cartoons
represent aqueous solvent. The upper cartoons represent a
uniform low dielectric (the same as that of the ligand and
receptor) with zero ionic strength throughout.

Figure 2. A mixed discrete-continuum model for estimating
the electrostatic component of a solute’s solvation free energy;
εI and εII represent the dielectric constants of the solute and
solvent regions, Γ is the boundary between the dielectric
regions and is typically a molecular (solvent-excluded) surface,
and q1 and q2 are representative discrete point charges in
the solute.

∆Gsolv
0 ) ∆Gsolv

0,np + ∆Gsolv
0,es (1)

∇2�I(r) ) -∑
i)1

nc qi

εI
δ(r - ri) (2)
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The solvent region is modeled as a homogeneous dielectric
with high dielectric constant εII; in this region, the electro-
static potential �II(r) satisfies the Laplace equation

for nonionic solutions, or for dilute ionic solutions, the
linearized Poisson-Boltzmann equation (LPBE)

where κ is the inverse Debye length. The continuity of the
potential and normal displacement furnishes boundary condi-
tions for both regions.39 In the remainder of this paper, we
assume that κ ) 0, noting that the PDE-constrained
optimization techniques apply equally well when the LPBE
is used to model the potential in the solvent.

This set of coupled partial differential equations (PDEs)
cannot be solved analytically except for relatively simple
geometries. For general problems and realistic treatments
of molecular geometries, numerical methods such as the
finite-difference, finite-element, or boundary-element meth-
ods must be employed.39–61 In contrast to the finite-
difference and finite-element methods, which discretize
the differential form of the PDE, boundary-element
methods discretize boundary-integral-equation formula-
tions of the PDE problem.39,40,42,43,47,53–55,59,62–66 Bound-
ary-integral formulations possess attractive theoretical and
numerical properties such as reduced dimensionality, the
possibility of exact treatment of the dielectric boundary, and
exact treatment of point charge effects and boundary conditions
at infinity.39 Many integral-equation approaches have been
described in the literature;39,40,42,47,55,62,67–69 in this paper, we
present only the polarizable continuum model (PCM) formula-
tion introduced by Miertus et al.40,51,70,71 (which was indepen-
dently derived by Shaw and Zauhar, who also called it the
apparent-surface-charge (ASC) formulation42,43,45) and the
formulation introduced by Yoon and Lenhoff.47

Using the electrostatic model in Figure 2, the computa-
tional challenge associated with calculating ∆Gsolv

0, es, the
electrostatic contribution to a solute’s solvation free energy,
is evaluating the reaction potentials at each of the nc charge
locations that is induced by solvent polarization in response
to the charges themselves. Because we have assumed linear
response, the vector of reaction potentials at the charge
locations, �R, can be written as a weighted combination of
the responses due to each of the individual point charges

where we have defined S to be the reaction-potential or
solVation matrix. The electrostatic free energy is then a
quadratic function of q

We now derive expressions for the reaction-potential matrix
S such that it may be written as

where M3, M2
-1, and M1 are linear operators.

2.1.1. The Apparent-Surface-Charge Formulation. Nu-
merous groups have derived the boundary-integral equation
for the surface charge that develops at a dielectric boundary
in response to a distribution of charge;40,42,72,73 it is known
variously as the polarizable-continuum model (PCM) and
apparent-surface-charge (ASC) formulation40,42,51,53 and has
been widely used in biomolecular simulations.43,45,53,63,68,74

Rather than solving for the potential throughout space in the
original mixed-dielectric PDE problem, one solves an
equivalent problem with uniform dielectric constant εI

everywhere, finding a distribution of charge σp(r) on Γ such
that σp(r) reproduces the continuity conditions of the original
mixed-dielectric problem. This surface charge satisfies the
second-kind integral equation42

where ∫denotes a principal-value integral,75,76 and n(r)
denotes the outward normal direction into solvent. The
surface charge distribution σp(r) produces in the molecular
interior (region I) a potential equal to that induced by the
polarization of the solute. The reaction potential at a solute
charge location ri is the result of convolving the free-space
Green’s function with the surface charge distribution

The set of reaction potentials at all the charge locations is
therefore the image of the charge distribution under three
linear operators

The operator M1 maps the solute charge distribution to the
induced normal-displacement field at the dielectric boundary;
that is, the application of M1 to q generates the right-hand
side (RHS) in eq 8.

The operator M2 generates the left-hand side in eq 8 when
applied to σp, and M2

-1 is used to denote the operator’s
inverse. That is, M2

-1 applied to the RHS in eq 8 generates
σp(r). Finally, the integral operator M3 maps the induced
surface charge to the reaction potentials at the charge
locations via eq 9. Note that M3M2

-1M1 is an nc-by-nc matrix,
even though M1, M2, and M3 are operators.

Because the charge distribution is a set of discrete point
charges, the difference in electrostatic free energy between
the uniform εI domain and the mixed-dielectric problem is
a finite-dimensional inner product

where �R denotes the vector of reaction potentials computed
at the nc charge locations. For problems in which εII > εI, S
) M3M2

-1M1 is symmetric negative definite.

∇2�II(r) ) 0 (3)

∇2�II(r) ) κ
2�II(r) (4)

�R ) Sq (5)

∆Gsolv
0,es ) 1

2
qTSq (6)

S ) M3M2
-1M1 (7)

εI + εII

2εI(εI - εII)
σp(r) +∫Γ

∂

∂n(r)

σp(r')dA'

4πεI|r - r'|
)

- ∂

∂n(r) ∑
i)1

nc qi

4πεI|r - r'|′ (8)

�R(ri) ) ∫Γ

σp(r′)
4πεI| |ri - r'| |

dA' (9)

�R ) M3M2
-1M1q (10)

∆Gsolv
0,es ) 1

2
�R

Tq (11)
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2.1.2. The NonderiVatiVe Green’s-Theorem Formulation. Us-
ing Green’s theorem, Yoon and Lenhoff derived a pair of
coupled integral equations capable of modeling solutes in
dilute ionic solutions (that is, when the LPBE holds in the
solvent).47 The integral equations are

where GI(r; r′) and GII(r; r′) are the free-space Green’s
functions in the solute and solvent regions, and the unknown
surface variables �(r) and (∂�)/(∂n)(r) are the surface
potential and its normal derivative. These equations are
derived by applying Green’s theorem in regions I and II,
finding the potential at arbitrary points in these regions by
substituting the relevant Green’s functions, and then letting
the points approach the surface by taking appropriate
limits.47,64,66 After solving eqs 12 and 13 for � and (∂�)/(∂n),
the reaction potential at the ith charge location induced by
solvent polarization can be written as

and again the electrostatic solvation free energy can be written
as a product of three linear operators as in eq 7.

2.2. Numerical Solution of the Integral Equations Using
Boundary-Element Methods and Fast Algorithms. The bound-
ary-element method (BEM) is a popular technique for solving
boundary-integral equations numerically. To solve an integral
equation such as eq 8 using the BEM, one first introduces a
set of basis functions defined on the surface. Representing
the unknown surface variable as a weighted combination of
the basis functions reduces the exact infinite-dimensional
problem to an approximation problem with a finite number
of unknowns, the weights used to scale the basis functions.
A set of constraints on the weights is then written to force
the approximate representation of the surface variable to
satisfy the discretized integral equation as closely as possible
in some metric (see, for example, ref 75). The resulting
problemsthat of finding the basis function weights that
minimize some function of the residualsis a finite-
dimensional matrix equation.

Usually, it is convenient to discretize the surface into a set
of surface patches, or boundary elements, before defining the
basis functions. In biomolecule electrostatic simulations, these
elements are commonly planar triangles,47,63 although curved-
element discretizations of molecule-solvent interfaces have been
described by several groups.39,56,59,61,77,78 We present a bound-
ary-element method for solving the ASC formulation. The
Green’s-theorem formulation (eqs 12 and 13) can be solved
analogously but requires two weights for each basis function:

one for the potential and one for its normal derivative. Full
details for solving the Green’s-theorem formulation numerically
can be found in refs 47, 64, and 66.

First, the molecule-solvent interface is discretized using
np boundary elements, and then a set of np piecewise-constant
basis functions is defined such that

The unknown surface charge density σp(r) is then represented
approximately as

where the weights xi are unknown. Using a Galerkin
discretization75 of the PCM/ASC formulation in which the
inner integral is evaluated via one-point quadrature,68,79,80

one obtains the dense linear system M2x ) M1q, with the
entries of M2 and M1 given by

where Ri denotes the area of panel i, ε̂ ) (εI + εII)/(εI - εII),
n(r) denotes the outward normal at r, and rci

denotes the centroid
of panel i. The approach presented here differs slightly from
the commonly used centroid-collocation method, which es-
sentially approximates the outer Galerkin integral using one-
point quadrature; the method described here offers superior
accuracy.68,79 We note that the matrix entries of eqs 17, 18,
and 19 are specific to the PCM/ASC formulation; if the Green’s
theorem formulation47,66 or other boundary-integral formulations
are employed to define the solvation matrix, similar matrices
are defined that play analogous roles.80

Protein-sized systems often require more than 105

unknowns and boundary elements to accurately represent
the molecule–solvent interfaces and surface variables.
Because solving the n-dimensional dense matrix equation
M2x ) M1q using LU factorization requires O(n3) time,
and even storing M2 requires prohibitively large O(n2)
memory, more efficient methods have been developed
whose time and memory requirements scale linearly or
near-linearly in the number of unknowns.54,63,65,81,82 These
fast-solver approaches combine Krylov-subspace iterative
methods83 such as GMRES84 with fast, approximate
algorithms to apply the discretized integral operator matrix
to a vector. At the kth iteration of a Krylov-subspace
algorithm, one finds an approximate solution x(k) that lies
in the kth Krylov subspace, which is formed by repeatedly
applying A to b

1
2

�(r) +∫Γ�(r′)
∂GI

∂n
(r, r′)dA′ - ∫Γ

∂�
∂n

(r′)GI(r, r′)dA′

) ∑
i)1

nc qi

εI
GI(r, r′) (12)

1
2

�(r) +∫Γ�(r′)
∂GII

∂n
(r, r′)dA′+

εI

εII
∫Γ

∂�
∂n

(r′)GII(r, r′)dA′ ) 0 (13)

�R(ri) ) ∫Γ [GI(ri;r')
∂�
∂n

(r') - �(r')
∂GI

∂n
(ri;r')]dA′

(14)

�i(r) ) {1 if r is on panel i
0 otherwise

(15)

σp(r) ≈ ∑
i)1

np

xi�i(r) (16)

M2,ii )
ε̂

2εI
Ri +∫panel i

∂

∂n(r)

RidA′
4πεI| |r - rci

| |
(17)

M2,ij ) ∫panel i

∂

∂n(r)

RjdA′
4πεI| |r - rcj

| |
(i * j) (18)

M1,ij ) -∫panel i

∂

∂n(r)

qjdA′
4πεI| |r - rj| |′

(19)

x(k) ∈ {b, Ab, A2b, ..., Ak-1b} (20)
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The fast multipole method81,85 and the precorrected-FFT
algorithm86 represent two algorithms that compute BEM matrix-
vector products in linear or near-linear time. The results in this
paper were computed using the FFTSVD algorithm, which
offers several advantages for biomolecule electrostatic prob-
lems.65,66

Krylov-subspace iterative methods are commonly precondi-
tioned so that instead of solving Ax ) b for x, one solves PAx
) Pb, where P is a matrix that approximates A-1 such that the
iterates x(k) converge more rapidly toward the exact solution;
that is, the use of a preconditioner reduces the number of matrix-
vector products required to find a suitably accurate approxima-
tion to the actual solution x. Preconditioning the ASC formu-
lation is easily accomplished using a diagonal matrix in which
Pii ) M2,ii

-1. Methods for preconditioning the Green’s-theorem
formulation are presented in refs 64 and 66.

2.3. Biomolecule Electrostatic Optimization. Using the
thermodynamic cycle in Figure 1, the total electrostatic
contribution to the binding free energy can be written as

where the solvation free energies for the ligand, receptor,
and complex are denoted by the superscripts L, R, and L :
R, and the ligand-receptor Coulomb-interaction energy is
written ∆Gbind

0, ref, es.1 Substituting the appropriate ligand, recep-
tor, and ligand-receptor reaction potential matrices, one
obtains

where qL and qR denote the ncL
- and ncR

-length vectors of
ligand and receptor charge values, qC ) (qL, qR)T, and Lunbound,
Runbound, and Cbound denote the appropriate solvation matrices;
the electrostatic component of the low-dielectric binding free
energy has been written (GqR)TqL, where the ncL

-by-ncR

Coulomb matrix G maps receptor-charge values to Coulomb
potentials at the ligand-charge locations given the bound-
state geometry.

The optimizable component of ∆Gbind
0, es, which is the portion

of ∆Gbind
0, es that is dependent on the ligand charges, is called

the variational electrostatic binding free energy ∆Gbind
0, var..6 The

first term in eq 22 does not contribute to ∆Gbind
0, var., nor does

the component of the final term that depends only on the
receptor charges. Writing 1/2(qC

TCboundqC) as

and exploiting the symmetry of Cbound allows the variational
electrostatic binding free energy to be written as

The final two terms in eq 24 are linear in the ligand charge
values, and the vector

which represents the total field induced by the receptor
charges at the ligand-charge locations in the bound state,
may be used to further simplify eq 24

Eq 26 is the objective function for optimizing the electrostatic
component of the free energy of binding. Kangas and Tidor
showed that the difference Lbound - Lunbound, which is the
Hessian of the objective function, is positive definite if one
assumes that the ligand binds rigidly, that the ligand charge
distribution is unchanged on binding, and that the molecules
have finite size.6 The variational electrostatic binding free
energy ∆Gbind

0, var is therefore a convex function with respect
to the ligand charge distribution, and there exists a unique
minimal free energy.

Often, it is of interest to enforce sum-of-charge constraints
over subsets of the charges and possibly over the entire
set.1,3,5 Defining the matrix H ) Lbound - Lunbound and
including the linear constraint Aq ) b gives rise to the
constrained optimization problem

In eq 27 and for the remainder of the paper the vector q is
used instead of qL to represent the ligand charges. In addition
to linear equality constraints, linear inequality constraints are
sometimes imposed on the variables to ensure that the
computed charges are physically reasonable. The resulting
inequality-constrained problem

where mi and Mi represent the lower and upper bounds for
qi. Assuming without loss of generality that A has full rank,
this problem can be transformed into the standard form for
a convex quadratic problem

using the substitutions

∆Gbind
0,es ) (-∆Gsolv

0,R,es - ∆Gsolv
0,L,es) + ∆Gbind

0,ref,es + ∆Gsolv
0,L:R,es

(21)

∆Gbind
0,es ) -1

2
qR

TRunboundqR - 1
2

qL
TLunboundqL + (GqR)TqL +

1
2

qC
TCboundqC (22)

∆Gsolv,L-R
0,es ) 1

2
[qL

T qR
T ][Lbound Cbound

L,R

Cbound
R,L Rbound ][qL

qR
] (23)

∆Gbind
0,var ) -1

2
qL

TLunboundqL + 1
2

qL
TLboundqL + qR

TGTqL +

qR
TCbound

L,R qL (24)

c ) GqR + Cbound
L,R qR (25)

∆Gbind
0,var ) 1

2
qL

T(Lbound - Lunbound)qL + cTqL (26)

minimize
1
2

qTHq + cTq

subject to Aq ) b
(27)

minimize
1
2

qTHq + cTq

subject to Aq ) b

and mi e qi e Mi, ∀i ∈ {1, ..., nc}
(28)

minimize
1
2

xTĤx + ĉTx

subject to Âx ) b̂
and x g 0

(29)
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where the slack variables t and r satisfy m + t ) q and q +
r ) M. This notation for inequality-constrained biomolecule
optimization problems will be used throughout the rest of
the paper.

Titratable chemical groups in the ligand warrant a brief
discussion. One of the assumptions inherent in the electrostatic
optimization theory is that the ligand geometry and charge
distribution do not change on binding.1 Thus, for the charge
optimization scheme presented here, the number of charges nc

remains unchanged during optimization, as do their locations,
and therefore charge optimization is performed for a particular
titration state. In reality, of course, the ligand-receptor binding
event may perturb the ligand geometry, its charge distribution,
or state of protonation, or any combination of these. Exploring
the dependence of the optimal charges (and the optimized
binding free energy) on the titration state is the most obvious
way to assess the impact of the assumptions underlying the
theory, although in general such an undertaking is likely to be
computationally expensive.

2.4. Solving Convex Quadratic Optimization Problems.
This section presents methods for minimizing the quadratic
function

where x is a vector of length nprimal, and the matrix H, also
known as the Hessian matrix, is symmetric and positive
definite (SPD). The global minimizer x* can be found by
setting ∇f(x) ) 0 and solving the resulting linear system

Optimization problems with constraints require more
sophisticated approaches (see, for example, refs 87 and 88).
The quadratic program

can be solved using Lagrange multipliers.87 The optimal
solution is a point x* and a corresponding vector of
multipliers λ* that together satisfy the matrix equation

Inequality-constrained problems require the introduction of
a vector of slack variables s in addition to the Lagrange

multipliers λ. Because the optimization problem in eq 29
satisfies a constraint qualification,87 an optimal solution
(x*, λ*, s*) can be calculated by finding a point that satisfies
the Karush-Kuhn-Tucker (KKT) optimality conditions

These conditions can be interpreted as the zeros of the
nonlinear function

where X represents the diagonal matrix with Xii ) xi. Primal-
dual interior point methods find the roots of this equation
using a modified Newton-Raphson iteration, with the
Newton-Raphson updates biased to ensure convergence and
scaled to ensure positivity of the elements of x and s.88 The
kth update of a primal-dual iterative method satisfies the
linear system of equations

where e is the vector of ones, Sk is diagonal with Sii
k ) si

k,
and the second term on the right-hand side (RHS) biases
the update toward a point with equal pairwise products xisi.

88

The parameter σ, which is between 0 and 1, determines the
strength of the bias. It can be a fixed value over all iterations
or set dynamically based on the progress of the previous
iterations.89 Smaller values for σ allow faster convergence
in most cases, but larger values offer superior robustness.88

The reverse-Schur optimization method is specialized to
PDE-constrained problems in which the relationships be-
tween the decision variables x, the PDE state variables yI,
and the external state variables yE are affine. That is, the
three vectors satisfy a matrix equality

for some vectors zI and zE; in the electrostatic optimization,
zI ) 0 and zE ) 0.

3. The Reverse-Schur Method for
Electrostatic Optimization

Some problems in computational science can be solved more
efficiently using a Schur complement, such that one solves
not a block linear system such as

x ) [ t
r ]
.

Ĥ ) [H 0
0 0 ]
.

ĉ ) [c + Hm
0 ]

.

Â ) [A 0
I I ]
.

b̂ ) [b - Am
M - m ]

(30)

f(x) ) 1
2

xTHx + cTx (31)

Hx* ) -c (32)

minimize
1
2

xTHx + cTx

subject to Ax ) b
(33)

[H AT

A 0 ][x*
λ* ] ) [-c

b ] (34)

s* ) Hx* + c - ATλ*
Ay* ) b
xi*si* ) 0, ∀i ∈ {1, 2, ..., nprimal}

(x*, s*) g 0

(35)

F(x, λ, s) ) [Hx + c - ATλ - s
b - Ax

Xs ] (36)

[H -AT -I

A 0 0

Sk 0 Xk ][∆xk+1

∆λk+1

∆Sk+1 ] ) [-c + sk - Hxk + ATλk

b - Axk

XkSke
] +

[ 0
0

σ xk,Tsk

nprimal
e ] (37)

[B A 0
D C -I ][ x

yI

yE
] ) [zI

zE
] (38)
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but rather a smaller (or better-conditioned) system like

The reverse-Schur co-optimization method uses the exactly
opposite approach. An unconstrained quadratic prog-
ram

in which the Hessian is of the form H ) M3M2
-1M1, can

be solved by setting the gradient equal to zero, leading to
the linear system

Eq 42 resembles eq 40 with D ) 0 and, therefore, the
Hessian may be said to have the structure of a Schur
complement. In reverse-Schur co-optimization, one solves
the larger “reverse-Schur-complement” system

As discussed in Section 2, the Hessian matrix H ) Lbound

– Lunbound is a difference of two matrices, each of which
has Schur structure. The reverse-Schur form of the
unconstrained electrostatic optimization problem therefore
has two reverse-Schur complements, and the optimizing
ligand distribution q* can be found by solving

where the subscripts b and u denote the bound and
unbound systems and the variables yb and yu are the surface
variables for the corresponding BEM problems when the
ligand charge distribution is the optimizing distribution
q*. In the ASC formulation, for instance, yb represents
the weights for the bound-state basis functions. The bound-
and unbound-geometry state variables are therefore found
simultaneously with the optimal decision variables q*. The

co-optimization approach in this respect resembles “all-
at-once” methods; however, the corresponding state
variables are not explicitly included in the optimization
problem. Section 3.1.2 details that approach to Hessian-
implicit optimization. It is important to note that the
matrices associated with reverse-Schur co-optimization are
not necessarily symmetric. Also, we note that the bound-
state and unbound-state surface are different, with the
bound state representing the larger ligand-receptor com-
plex; consequently, the vector yb is typically a longer
vector than yu.

As discussed in Section 2, electrostatic charge optimiza-
tion problems usually have many fewer decision variables
than there are degrees of freedom associated with the BEM
problems. Reverse-Schur co-optimization systems such as
eq 44 are therefore only slightly larger than the corre-
sponding BEM systems. Efficient preconditioning strate-
gies, which will be described in Section 4, allow systems
such as eq 44 to be solved with approximately the same
computational cost as would be required to solve a single
bound-state and a single unbound-state electrostatic
problem. We emphasize that the dense boundary-element
matrices M2,b and M2,u are almost always too large to be
calculated or stored, and so their LU factorizations cannot
be computed. Forming H in eq 41 explicitly requires nc

solves of the bound and unbound geometries. The reverse-
Schur method is therefore more computationally efficient
than the explicit-Hessian approach.

The next section presents alternative Hessian-free PDE-
constrained methods, such as a nested-Krylov method, or
NAND-like approach, and a traditional PDE-constrained
formulation, following the SAND paradigm. Section 3.2
describes biomolecule co-optimization techniques for con-
strained problems.

3.1. Alternative PDE-Constrained Approaches. 3.1.1. Nest-
ed-KryloV Approach. One alternative to the co-optimization
approach would be to use nested Krylov methods to solve
the linear systems associated with the explicit-Hessian
approach. The unconstrained problem

would then require two inner Krylov solves for every matrix-
vector multiplication required for the outer Krylov method:
one for the bound-state problem and one for the unbound-
state problem. This approach represents an implementation
of a nested analysis and design (NAND) approach to PDE-
constrained optimization.

3.1.2. Incorporating the PDE as Constraints. The elec-
trostatic optimization problem can also be formulated in a
traditional PDE-constrained approach in which the surface
variables of the bound- and unbound-state boundary-element
problems are included as optimization variables, with the
boundary-element method equations added as equality
constraints. The resulting problem

[A B
C D ][x

y ] ) [a
b ] (39)

(D - CA-1B)y ) b - CA-1a (40)

minimize
1
2

xTHx + cTx (41)

M3M2
-1M1x* ) -c (42)

Figure 3. Schematic of a model ligand-receptor complex
for studying implementation details for the co-optimization
method. The surface of the ligand-receptor complex is
defined by rolling a probe sphere of radius 1.4 Å over the
union of the two spheres. All distances are in Angstroms.

[ 0 M3

-M1 M2
][x*

y ] ) [-c
0 ] (43)

[ 0 M3,b -M3,u

-M1,b M2,b 0
-M1,u 0 M2,u

][q*
yb

yu
] ) [-c

0
0 ] (44)

(M3,bM2,b
-1M1,b - M3,uM2,u

-1M1,u)q* ) -c (45)
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can be solved by setting the gradient to zero and solving the
resulting linear system

The matrix in eq 47 is symmetric, which allows the system
to be solved using specialized Krylov-subspace iterative
methods. However, every matrix-vector product requires
twice as much calculation as the matrix-vector products
required for Krylov methods to solve eq 44. It can also be
difficult or impractical to apply the transposed matrices M2,b

T

and M2,u
T . Thus, both the reverse-Schur method and the

SAND-type approach have strengths and weaknesses.
3.2. Constrained Co-Optimization. It is straightforward

to use the reverse-Schur method to solve the constrained
optimization problems presented in Section 2.4. After
transforming eq 34, the co-optimization system for solving
the problem with linear-equality constraints is

Similarly, the co-optimization system associated with the kth
iteration of a primal-dual interior-point method is transformed
from eq 37 to

where

with the zero submatrices of the appropriate size given the
transformation of the inequality-constrained problem into
standard form, and M̂1, u and M̂3, u are similarly defined. The
term Ĥxk on the right-hand side is computed as

and Ĥx0 must be found before the first iteration.

4. Implementation

In this section we present two implementation details that
are important for the co-optimization method to achieve
high efficiency and accuracy. First, regularization of the
optimization presents a critical challenge. The need for
regularization arises due to numerical error in simulation;
although the exact Hessian is positive definite, typically
a numerically computed H is not. Given H explicitly, the
eigendecomposition or singular value decomposition can
be used to penalize or eliminate the nonphysical part of
the matrix. However, for the reverse-Schur (or any other
implicit-Hessian) method to produce results comparable
to those obtained by current methods, accurate regulariza-
tion techniques must be found so that the appropriate
directions can be penalized. Second, effective precondi-
tioning schemes need to be developed because the co-
optimization linear systems are solved using Krylov
iterative methods.

A simple model geometry, shown in Figure 3, is used to
demonstrate the performance of the presented regularization
and preconditioning methods. The unbound ligand is a sphere
of radius 8 Å; the ligand-receptor complex is modeled as
the solvent-excluded surface produced by rolling a 1.4-Å
probe sphere over the union of the ligand sphere and a 24-Å
radius sphere representing the receptor, where the sphere
centers are separated by 20 Å.38 The internal dielectric
constant is taken to be 4 and the solvent external dielectric
constant to be 80. For simplicity in this paper, we assume
that the Laplace equation holds in the solvent region (that
is, that there are no mobile ions in solution). However, the
implicit-Hessian methods can be used also for the case when
the LPBE holds in the solvent region.

The receptor charge distribution consists of 2000 ran-
domly placed charges located such that no charge is within
1.5 Å of another charge, the dielectric boundary, or the
ligand volume; the charge values have been chosen from
a uniform distribution on [-1e, 1e]. The ligand charge
distribution is built from a set of charge locations
randomly placed in the ligand sphere subject to the
constraints that no charges are within 1.5 Å of one another
or of the ligand boundary. Several discretizations of each
geometry have been generated. One surface discretization
uses planar triangle boundary elements generated using
MSMS,90 with 71922 and 7924 elements used to ap-
proximate the bound and unbound surfaces; the other uses
2132 and 1810 curved boundary elements that exactly
represent the two geometries.78 Coarser discretizations

minimize
1
2[q

yb

yu
]T[ 0

1
2

M3,b -1
2

M3,u

1
2

M3,b
T 0 0

-1
2

M3,u
T 0 0 ][q

yb

yu
] + [c

0
0 ]T[q

yb

yu
]

subject to [-M1,b M2,b 0
-M1,u 0 M2,u ][q

yb

yu
] ) [0

0 ]
(46)

[ 0 -1
4

M3.b -1
4

M3.u -M1,b
T -M1,u

T

1
4

M3,b
T 0 0 M2,b

T 0

-1
4

M3,u
T 0 0 0 M2,u

T

-M1.b M2.b 0 0 0
-M1.u 0 M2.u 0 0

][q*
yb*
yu*
λb*
λu*

] ) [-c
0
0
0
0

]
(47)

[ 0 AT M3,b -M3,u

A 0 0 0
-M1,b 0 M2,b 0
-M1,u 0 0 M2,u

][q*
λ*
yb

yu
] ) [-c

b
0
0

] (48)

[ 0 -ÂT -I M̂3,b -M̂3,u

Â 0 0 0 0

Sk 0 Xk 0 0

-M̂1,b 0 0 M2,b 0

-M̂1,u 0 0 0 M2,u

][∆xk+1

∆λk+1

∆sk+1

∆yb
k+1

∆yu
k+1

] )

[-ĉ - sk - Ĥxk + ÂTλk

b̂ - Âxk

XkSke + σxk,Tsk

nc
e

M̂1,bx
k - M2,byb

k

M̂1,ux
k - M2,uyu

k
] (49)

M̂1,b ) [M1,b 0 ] (50)

M̂3,b ) [M3,b

0 ] (51)

Ĥxk ) Ĥxk-1 + M̂3,b∆yb
k - M̂3,u∆yu

k (52)
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have been used for some examples and are described
where appropriate. Full computational details are deferred
to Section 5.

4.1. Regularization. The explicit-Hessian approach to
biomolecule electrostatic optimization allows straightforward
regularization. The numerically calculated Hessian matrix
is first symmetrized to remove numerical-error-based asym-
metries. Because the Hessian is available explicitly, it is
possible to calculate its eigendecomposition. The eigenspace
corresponding to the smallest eigenvectors is then heavily
penalized but not removed explicitly, so that the existence
of a feasible solution is assured even in the presence of other
constraints. The co-optimization approach, in contrast, does
not permit the use of direct eigendecomposition, because the
Hessian matrix is not available. Co-optimization achieves
its performance advantage by leaving the Hessian implicit,
and therefore little information is available regarding its
spectrum or corresponding eigenvectors. In order to solve
the same optimization problems using the current protocols
without sacrificing performance, the minimal eigenspace
must be approximated inexpensively.

In ref 89, linear-equality constrained co-optimization
problems were preconditioned using an approximate Hessian
Ĥ of the form

where P2,b and P2,u represent the bound- and unbound-state
BEM preconditioners. Using a diagonal approximation of
the ASC integral equation as the preconditioner P2 corre-
sponds to the recent BIBEE/P electrostatic model.91 When
performing co-optimization using the Green’s theorem
formulation, the operators M1, M2, M3, and P2 differ from
those employed in the ASC formulation (i.e., the entries of
M2 are no longer defined according to eq 17). However, the
Green’s theorem co-optimization linear systems are written
the same way, and an approximate Hessian can still be
defined according to eq 53.

To illustrate that an approximation to the ASC formulation
can be used to regularize the optimization method but not
the Green’s-theorem method approximation, explicit Hessians
and their approximations were calculated using both integral
formulations and both planar and curved boundary elements.
The four Hessian matrices and their approximations were
decomposed using the singular value decomposition (SVD),
and the right singular vectors of the approximate Hessians
were projected onto those from the corresponding explicitly
calculated Hessians. The Green’s-theorem and ASC formula-
tions produced very similar explicit actual Hessians (||HA -
HG||/||HA|| < 0.01), regardless of whether planar or curved
boundary elements were used.

To ensure comparable regularization between explicit-
Hessian and implicit-Hessian optimization procedures, implicit-
Hessian methods must penalize not only the same number
of search directions as explicit-Hessian methods but also the
search directions themselves. To illustrate how the singular
vectors of an approximate Hessian Ĥ are aligned with the
singular vectors of the actual Hessian H, we calculate the
matrix

which represents the projection of the singular vectors of Ĥ
onto those of H. Perfect alignment between the sets of vectors
would produce a diagonal matrix X whose diagonal entries
all have unit magnitude. Similarly, the degree to which the
singular vectors of Ĥ are imperfectly aligned with those of
H is reflected in the presence of nonzero entries off the
diagonal. Figure 4(a) is a pseudocolor plot of the magnitudes
of the entries of X, using approximate and actual Hessians
computed from the Green’s-theorem formulation and the
planar-element discretization. The analogous plot, computed
using the ASC formulation and planar elements, is shown
in Figure 4(b). The ASC-based approximate singular vectors
are clearly much better aligned with the corresponding
singular vectors of the explicitly computed ASC Hessian.
Similarly, plotted in Figure 5(a),(b) are the results of curved-
element simulations of the Green’s-theorem and ASC
formulations, respectively, with the approximate Hessian
right singular vectors projected onto the explicit-Hessian right
singular vectors. Because the ASC formulation generates
superior approximate Hessians to the mixed formulation for
both kinds of discretizations, we attribute the fidelity to the
superior conditioning of purely second-kind integral operators
(see, for instance, ref 56). In principle, it is possible to
regularize the Green’s-theorem co-optimization system using
the penalty matrix derived from the ASC-based approximate
Hessian. However, the results in Section 4.2 illustrate that
the superior conditioning of the second-kind integral equation
produces convergence of the co-optimization GMRES in
many fewer iterations than are required for the Green’s-
theorem based co-optimization.

Figure 6(a),(b) contains plots of the singular values for
the planar- and curved-element discretizations. Predictability
of the relation between the approximate singular values σ̂i

and the actual values σi is important so that the appropriate
number of search directions can be penalized. The singular
values of ĤA were much closer to those of HA than the
singular values of ĤG were to HG.

Based on the results in Figures 4, 5, and 6 we adopted the
following scheme to regularize the co-optimization solutions.
The ASC-based Hessian approximation ĤA was computed
first, and the eigendecomposition of the symmetrized matrix
1/2(ĤA + ĤA

T) was taken. The first right singular vector V̂1

was multiplied by the Hessian HA using BEM simulation of
the bound- and unbound-states, and the Rayleigh quotient

was then used as an estimate for the maximum eigenvalue
of HA. The penalty matrix

was then created, where the penalty paramater R ) 100 kcal/
mol/e2, the eigenvalue tolerance γ ) 10-4, and the set of
penalized directions I ) {i|σ̂i < γλ̂1}. The quadratic penalty
term 1/2qTWq was then added to the objective function, and
optimization could begin. The unconstrained co-optimization
system with a penalty matrix is

Ĥ ) M3,bP2,bM1,b - M3,uP2,uM1,u (53)

VH
T VĤ (54)

λ̂1 ) V̂1
THAV̂1 (55)

W ) RV{:,I}V{:,I}
T (56)
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and the systems for constrained problems are similarly
modified.

Even though λ̂1 usually approximated λ1 to within a few
percent, sometimes the number of directions penalized was
slightly different from the number that would be penalized
in an explicit-Hessian method using the same tolerance γ.
As a result, it was desirable to have an inexpensive means
of obtaining approximations to the optimal distributions for
problems where different numbers of directions were penal-
ized. For the unconstrained and linear-equality constrained
problems, such estimates could be obtained using an ap-

proximation to the Sherman-Woodbury-Morrison for-
mula

which specifies how the inverse of a matrix H changes when
H is perturbed by the low-rank update UVT. Update-
approximation methods for inequality-constrained problems
represent an area of current research.

4.2. Preconditioning. The Hessian-implicit linear systems
in eqs 44, 48, and 49 share a similar structure and therefore
can be preconditioned by similar methods. For a problem
with nprimal decision variables and ΣnSV total unknowns
associated with the BEM simulations, we define the desol-
vation operators

Figure 4. Comparison of the explicit and approximate Hessians of the sample problem in Figure 3 when discretized using
planar boundary elements. The alignment between the singular vectors of exact and approximate Hessians is obtained by
projecting the right singular vectors of an approximate Hessian Ĥ onto the right singular vectors of the explicit Hessian H and
taking the magnitude of the resulting entries. Each row and column therefore has 2-norm of one. (a) Explicit and approximate
Hessians obtained using the Green’s theorem formulation. (b) Explicit and approximate Hessians obtained using the polarizable
continuum model/apparent surface charge formulation.

Figure 5. Comparison of the explicit and approximate Hessians of the sample problem in Figure 3 when discretized using
curved boundary elements. The alignment between the singular vectors of exact and approximate Hessians is obtained by
projecting the right singular vectors of an approximate Hessian Ĥ onto the right singular vectors of the explicit Hessian H and
taking the magnitude of the resulting entries. Each row and column therefore has 2-norm of one. (a) Explicit and approximate
Hessians obtained using the Green’s theorem formulation. (b) Explicit and approximate Hessians obtained using the polarizable
continuum model/apparent surface charge formulation.

[ W A3,b -A3,u

-A1,b A2,b 0
-A1,u 0 A2,u

][ q*
σp,b

σp,u
] ) [-c

0
0 ] (57)

(H + UVT)-1 ) H-1 - H-1U(I + VTH-1U)-1VTH-1

(58)
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where the zero blocks are sized such that M̂1 ∈ RΣnSV × nprimal

and M̂3 ∈ R nprimal × ΣnSV.
We define the preconditioners by block-factorizing the

corresponding linear systems using the BEM preconditioners
rather than the inverses of the BEM matrices. The Hessian-
implicit preconditioners would therefore be exact if the BEM
preconditioners were actually the BEM matrix inverses. The
resulting preconditioners can be written as the product P̃ )
P̃4P̃3P̃2P̃1. Other preconditioners, which for example block-
triangularize the Hessian-implicit linear systems, can also
be used but are generally less effective than the block
factorization. Figure 7(a),(b) contains plots of the precon-
ditioned relative GMRES residuals as a function of iteration
count for the unconstrained problem using the Green’s
theorem formulation and the apparent surface-charge for-
mulation. Each solves the same 50-charge unconstrained
problem using curved-element discretizations of the model
problem in Figure 3, using different preconditioners. It is
clear that the ASC co-optimization converges in many fewer
iterations than the corresponding Green’s-theorem co-
optimization, regardless of which approach to precondition-
ing is employed.

5. Computational Results

5.1. Efficiency of Co-Optimization and PDE-Constrained
Approaches. The standard “all-at-once” approach and nested-
Krylov approach to the electrostatic optimization problem

were implemented in MATLAB using the geometry in Figure
3 and relatively coarse discretizations of 142 and 124 curved
elements for the bound and unbound geometries. The
methods’ implementations were verified by direct inspection
of the optimal charges computed by dense factorization of
the systems in eqs 45 and 47. These techniques and the co-
optimization solver were then used with preconditioned
GMRES to solve a set of unconstrained problems of varying
dimension. Computational expense was measured by count-
ing the total number of applications of the BEM operator
M̂2, because the computational cost of optimization is
dominated by the application of the BEM operators. The all-
at-once solver required two M̂2 matrix-vector products for
every Krylov iteration.

The number of required applications for the nested-Krylov
method was estimated using the fact that the nested-Krylov
method, which relies on an implicit Hessian, and an explicit-
Hessian Krylov method require the same number of GMRES
iterations to achieve convergence. Therefore we estimated
the nested-Krylov computational expense using the explicitly
calculated Hessian, rather than a true nested-Krylov code.
The GMRES solve was preconditioned using the ASC-based
Hessian approximation ĤA. The all-at-once system was
preconditioned using a block-factorization method similar
to the co-optimization preconditioning schemes, so that the
all-at-once preconditioner would be exact if the BEM
preconditioner were exact. Every GMRES iteration for the
all-at-once system requires two applications of the BEM
operator M̂2, as shown in eq 47. Figure 8 is a plot of the
computational cost of these methods for solving uncon-
strained problems as the number of optimization variables
varies from 5 to 130. The PDE-constrained approaches scale
very favorably compared to the explicit-Hessian approach
and exhibit essentially comparable reductions in cost. It
should be noted that the performance differences between
the PDE-constrained approaches may reflect the relatively
unoptimized implementations of the methods, and no sig-
nificant conclusions should be drawn regarding the merits

Figure 6. The magnitudes of the singular values of the explicit and approximate Hessians computed using (a) planar boundary
elements and (b) curved boundary elements. The singular values of the approximate Hessians calculated using the Green’s-
theorem formulation are less accurate than the singular values of the approximate Hessians computed using the apparent-
surface-charge (ASC) formulation, regardless of whether planar or curved boundary elements are employed.

Ĵ1 ) [-M1,b 0
-M1,u 0 ] (59)

Ĵ2 ) [M2,b 0
0 M2,u

] (60)

P̂2 ) [p2,b 0
0 p2,u

] (61)

Ĵ3 ) [M3,b -M3,u

0 0 ] (62)
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of one PDE-constrained technique over another. We note
also that constrained problems exhibit similar performance
trends.89,92

5.2. Realistic Protein-Ligand Systems. The three-
dimensional structures of a complex between HIV-1 protease
and darunavir (accession code 1T3R) and a complex between
CDK2 and a small-molecule inhibitor (accession code 1OIT)
were obtained from the Protein Data Bank (PDB). For both
structures, protein side chains with missing density were
rebuilt in their default geometry using the CHARMM
computer program,93 and in cases of multiple occupancy,
the first entry listed was used. The final chi angles for
asparagine, glutamine, and histidine side chains were flipped
by 180 degrees as necessary to improve the hydrogen
bonding network. Hydrogen atoms were added to both
structures using the HBUILD module94 of CHARMM and
the PARAM22 parameter set,95 using a distance-dependent
dielectric constant of 4. Ionizable residues were left in their
standard states at pH 7. In the case of HIV-1 protease, the
catalytic dyad was left doubly deprotonated. The receptor
protonation states are assumed to be the same in both the

bound and unbound states. For electrostatic simulations,
atomic radii were taken from the PARSE parameter set.96

Partial atomic charges for protein atoms were also taken from
the PARSE parameter set; quantum-mechanically derived
partial atomic charges for the small-molecule inhibitors were
calculated as follows. The geometry of each small-molecule
inhibitor was optimized using quantum mechanical calcula-
tions at the RHF/6-31G* level of theory as implemented in
the program Gaussian 98.97 After geometry optimization,
partial atomic charges were fit to the quantum mechanical
electrostatic potential using the RESP methodology.98,99 Both
the CDK2 and HIV-protease systems were optimized using
the co-optimization method and an explicit Hessian; the same
curved-element discretizations were used for both methods.
As in Section 4, solute-solvent interfaces were defined as
solvent-excluded (molecular) surfaces using a probe of radius
1.4 Å, and the solute and solvent dielectric constants were 4
and 80, respectively.

5.2.1. CDK2 and Inhibitor. The CDK2 inhibitor described
by Anderson et al. has 40 atoms.31 Optimization of the partial
atomic charges for a small-molecule inhibitor of CDK2 did
not lead to significantly improved predicted electrostatic
binding free energy; this inhibitor appears to already be very
well optimized for its protein target. From finite-difference
simulations, the total electrostatic contribution to binding for
the quantum-mechanically derived (nominal) charge distribu-
tion, which has net zero charge, is 8.75 kcal/mol, and the
optimal charge distribution leads to an electrostatic binding
free energy of 5.54 kcal/mol.

Figure 9 is a plot of the inhibitor with RESP-derived
nominal charge values (in red) and the co-optimization
unconstrained optimal charge values (in blue) labeling each
atom, computed using curved boundary elements. It can be
seen that the inhibitor atoms that directly hydrogen bond to
the protein, especially those in the aminopyrimidine core,
have optimal partial atomic charges that closely match those
determined through quantum mechanics.

The wild-type molecule has zero net charge, and the co-
optimization optimal solution from Figure 10 has a net charge
of -0.26e. For comparison, the explicit-Hessian boundary-
element approach leads to an unconstrained optimum with

Figure 7. Preconditioning effects on GMRES convergence for a 50-charge unconstrained optimization problem using (a) the
nonderivative Green’s-theorem formulation of Yoon and Lenhoff47 and (b) the Shaw apparent-surface-charge formulation.42

Figure 8. The cost to solve unconstrained optimization
problems of varying dimension using the co-optimization
method, the two alternative implicit-Hessian approaches
presented in Section 3.1, and by calculating the Hessian
explicitly.
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-0.33e net charge, and the finite-difference optimal charges
sum to 0.06e; the preponderance of the difference is localized
in a small number of atoms whose optimal charges are of
large magnitude (Figure 10). As expected, optimal charges
computed using the explicit Hessian and the co-optimization
methods were nearly identical. Explicit-Hessian calculations
were performed using both finite-difference methods100 and
boundary-element methods,66 as was the boundary-element
based co-optimization approach. The first instructive com-
parison, of the explicit-Hessian approaches, demonstrates that
even the vastly different approaches to numerical simulation
produce optimal charges that correspond very closely. The
methods must give exactly the same results in the limit of
infinitely fine discretizations, of course, but it is valuable to
know that such good agreement can be obtained even for
discretizations that can be easily solved on a personal

workstation. The excellent agreement between the boundary-
element methods demonstrates the correct implementation
of the co-optimization approach and that numerical errors
associated with the implicit representation of the dense
boundary-integral operators do not materially affect the
computed optimal solution.

The total charge on the inhibitor was also constrained to
different net charge values. For these problems with different
constraints, very little change was observed in the partial
atomic charges for atoms directly interacting with the
receptor, and the calculated optimal binding free energy (the
objective function at the optimum) changed minimally.
Figure 11 shows the box-constrained optimal charges when
the total inhibitor charge was constrained to be -1, 0, or
+1, computed using co-optimization. The co-optimization
charges again correspond closely with calculations performed
using either boundary-element or finite-difference methods
with explicit Hessians (data not shown). The finite-difference
calculations gave rise to optimized binding free energies of
6.88 kcal/mol for the -1e-constrained problem, 5.54 for the
zero-charge problem, and 6.55 for the +1e-constrained
problem.

The partial atomic charge values of the solvent-exposed
sulfonamide group changed the most to accommodate these
different net charges, largely because their solvent-exposed
nature results in small desolvation penalties on binding. It
should be noted that the 0.85e bound on the sulfur partial
charge may be too stringent. These box constraints were
introduced following earlier work3 and the observation that
few biomolecular systems are modeled as having partial
charges of larger magnitude, regardless of whether the partial
charges are taken from molecular mechanics force fields such
as CHARMM95 or derived from electronic structure calcula-
tions and RESP fitting. Our primary purpose here, however,
is to demonstrate that the co-optimization method is fully
capable of treating inequality constraints using a primal-dual
interior point method. Also, the constraining of the total

Figure 9. The Anderson et al. inhibitor of CDK2.31 The atoms are labeled with (red) partial atomic charge values derived from
quantum mechanics via RESP98,99 fitting and (blue) optimized partial atomic charges computed with unconstrained minimization
using curved-element BEM and co-optimization.

Figure 10. The unconstrained optimal partial atomic charges
computed using finite-difference and boundary-element ex-
plicit Hessians as well as using the reverse-Schur co-
optimization method. The boundary-element simulations em-
ployed curved boundary element discretizations.
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charge to either -1, 0, or +1 is not meant to test protonation
states, given that the same number of charges and the same
set of charge locations are used in each test. Optimization
under these varying constraints suggests whether the opti-
mized binding affinity or the optimal charge distribution is
sensitive to the overall inhibitor charge, and for this problem
neither appears to be the case.

The unbound- and bound-state geometries consisted of
3821 and 138,770 curved boundary elements, respectively.
Calculating the explicit Hessian required 461 applications
of the bound-state integral operator M2,b. In contrast, using
reverse-Schur co-optimization, the unconstrained and linear-
equality constrained problems each required at most 2 M̂2

matrix-vector products, which is essentially the same cost
as 2 M2b matrix-vector products owing to the small size of
the unbound system. The more than 200-fold reduction in
the number of matrix-vector products for such a small
problem suggests that the model problems based in Figure
3 may actually be more computationally challenging than
realistic problems, because a model problem of comparable
size showed an acceleration of only a factor of 10 using co-
optimization over an explicit-Hessian method (see Figure 8).

This example illustrates one weakness of our chosen metric
for performance improvementsthe reduction in the number
of M̂2 matrix-vector products. This metric neglects the startup
cost that must be paid regardless of whether one intends to
use explicit-Hessian or co-optimization methods and thus the
overall compute time required to obtain an unconstrained
optimium is not being reduced by a factor of 200. Our
decision to use the number of M̂2 matrix-vector products as
an improvement metric is based on the consideration that it
is impossible to perform the optimization without paying the
initialization cost. Thus, from a theoretical perpective it is
appropriate to neglect this cost in comparing optimization
methods.

Nevertheless, as a practical matter, it is important to
understand the impact of co-optimization on overall com-
putational cost. On a 2-GHz Intel MacBook pro, the planar-

boundary-element simulations require approximately 100 s
of setup time, and the bound-state simulations require an
average 5 s (6 GMRES iterations are generally required for
bound-state simulations). The overall unconstrained co-
optimization cost is thus about 102 s (100 s for initialization
and 2 GMRES iterations to solve the unconstrained co-
optimization problem), whereas the overall optimization cost
for the BEM explicit-Hessian approach is about 300 s (100
s for initialization and 5 s for calculating each of the 40
columns of the Hessian). Thus the total reduction in
computational cost is almost a factor of 3. For large problems
such as optimizing protein-protein interactions, it can be
expected that the total reduction will be even larger.

5.2.2. HIV-1 Protease and Inhibitor. The 75-atom
inhibitor darunavir binds tightly to HIV-1 protease.28 In
Figure 12, the atoms are labeled with indices corresponding
to the entries in Table 1, which lists the RESP-derived charge
values, the unconstrained co-optimized partial atomic charge
values, optimal charges under a zero total charge equality
constraint, and the optimal charges computed with box
constraints such that no charge exceeded 0.85e in magnitude,
with sum-of-charge constraints set to -1, 0, and 1.

We emphasize that the equality constraints have not been
introduced to evaluate protonation effects but only to esti-
mate the influence of total charge on the optimal solution
(and the associated binding free energy). Our results illustrate
that the faster co-optimization method generates results
consistent with the traditional approach. The unbound- and
bound-state geometry discretizations consisted of 5892 and
133,067 curved boundary elements. Computation of the
explicit Hessian required 576 applications of the operator
M2,b, and unconstrained co-optimization required 15 M2 b

matrix-vector products. In Figure 13 are plotted the uncon-
strained optimal charges computed using the explicit-Hessian
and the co-optimization methods and again, the answers agree
extremely well.

Electrostatic optimization of darunavir in the HIV-1
protease active site led to a significant improvement in the

Figure 11. The Anderson et al. inhibitor of CDK2.31 Partial atomic charges have been optimized using box inequality constraints
to enforce that charge values are less than 0.85e in magnitude, and sum-of-charge constraints have been imposed such that
the total inhibitor charge is -1 (red label), 0 (blue label), or +1 (green label).
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predicted electrostatic binding free energy. The ligand is net
neutral, and the wild-type charge distribution gives a finite-
difference-calculated electrostatic binding free energy of
27.54 kcal/mol, and the unconstrained optimal solution
computed using co-optimization gives an electrostatic binding
free energy of 5.48 kcal/mol. The resulting optimized binding
free energies for the bound-constrained problems were for
the -1e problem, 10.40 kcal/mol; for the neutral problem,
6.89 kcal/mol; for the +1e problem, 5.73 kcal/mol.

The improvement on optimization can be attributed mainly
to an accumulation of positive charge in the center of the
ligand, near the negatively charged aspartyl dyad. These
atoms are buried in both the bound and unbound states due
to the molecular shape and consequently can take larger
charge values without incurring significant desolvation
penalties. For the unconstrained problems, the net ligand
charge for the co-optimization method was 0.64e, 0.64e for
the curved-boundary-element explicit-Hessian method, and
1.00e using the finite-difference method.

Inhibitor atoms that make direct hydrogen-bonding inter-
actions with the protease, such as the aniline nitrogen and
hydrogen atoms (atom indices 1, 39, and 40), hydroxyl group
(indices 18 and 57), and bis-tetrahydrofuran oxygen atoms
(indices 26 and 28) have optimal charges very similar to
their quantum-mechanically derived values.

6. Discussion

In this paper we have described an efficient technique, which
we call reverse-Schur co-optimization, for calculating the
molecular charge distribution that optimizes the electrostatic
component of the free energy of binding to another molecule.
The approach exhibits substantially better performance than
traditional optimization approaches, which explicitly calculate
the Hessian matrix before optimization. The co-optimization
approach is a PDE-constrained optimization technique and
exhibits comparable performance to alternative PDE-constrained
optimization techniques that are well-known in other areas of
computational science and engineering. Although this paper has
presented an approach based on a boundary-element method
(BEM) for solving the electrostatics problem, no fundamental
issues seem to preclude the use of other numerical methods in
a co-optimization approach. The critical elements for efficient
co-optimization appear to be the availability of good precon-

ditioners and sufficiently accurate but computationally inex-
pensive, Hessian approximations.

The reverse-Schur approach to PDE-constrained optimiza-
tion is only possible because the PDE state variables and
the decision variables are linearly related. This structure
enables the PDE to be incorporated as a final algebraic
manipulation before numerically solving the linear systems
associated with quadratic programming. The all-at-once and
nested approaches PDE-constrained optimization techniques,
in contrast, are much more flexible with respect to the
relationships between the state and decision variables.

Regularizationsthe penalization of certain search direc-
tions associated with the smallest eigenvaluessis more
complicated for PDE-constrained approaches than for meth-
ods that rely on explicit Hessians. However, the BIBEE/P
approach to estimating electrostatic interactions91 has been
demonstrated to generate a sufficiently accurate Hessian
approximation whose eigendecomposition can be used as the
basis for deriving a penalty function. The superior condition-
ing of purely second-kind integral-equation formulations56,75

relative to first-kind or mixed first-second-kind equations has
an unexpected consequence in that the Yoon and Lenhoff
formulation cannot be used to generate a preconditioner-
based Hessian approximation.

A number of extensions to the co-optimization technique
may make it still more efficient. For instance, primal-dual
interior-point methods are less efficient than active-set
methods for “warm start” problems, in which one begins
optimizing from a neighborhood of the optimal solution.
Coupling co-optimization to an active-set solver might
therefore significantly reduce the cost required to solve
problems that differ only by the inclusion of varying
constraints. Furthermore, a co-optimization warm-start method
may be faster than the present implementation because there
exist ways (such as Gasteiger-Marsili charges101) to rapidly
estimate a wild-type charge distribution that could be used
as an initial guess for the optimal distibution. One might
also save the Hessian-vector products as they are formed, in
essence allowing the Hessian to be “built” such that after a
sufficient number of optimizations have been performed, the
solver is using a completely explicit Hessian.

The efficiency gains afforded by PDE-constrained methods
in general, not just the reverse-Schur approach presented
here, should allow significantly larger and more complex

Figure 12. The HIV-1 protease inhibitor darunavir28 with atom indices for reference to Table 1. Hydrogen atom indices are
indicated in parentheses adjacent to the atoms to which they are bonded.
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biological systems to be studied. Computational redesign of
proteins, for instance, may produce optimization problems
with dimension greater than one thousand. For these prob-
lems, co-optimization can offer a cost reduction of over 2
orders of magnitude;92 such an acceleration may allow the
evaluation of many more candidate ligands or ligand poses.
Also, geometry can now be varied to assess the best-case

energetic cost of adding of a functional group as it changes
a binding partner’s desolvation penalty or the effects of
molecular flexibility.16 For example, it may be computa-
tionally feasible to use co-optimization to study the influence
of different protonation states on binding free energies and
on the optimal charge distributions associated with each state.
Finally, the original electrostatic optimization paper by Lee
and Tidor noted an unexpected asymmetry between the
receptor charge distribution and the calculated optimal ligand
distribution.1 Because co-optimization allows the use of
substantially larger basis sets, it may be able to develop
techniques that can identify optimal charge placement as well
as value.
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Abstract: To generate coarse electrostatic models of proteins, we developed an original
approach to hierarchically locate maxima and minima in smoothed molecular electrostatic
potentials. A charge-fitting program was used to assign charges to the so-obtained reduced
representations. Templates are defined to easily generate coarse point charge models for protein
structures, in the particular cases of the Amber99 and Gromos43A1 force fields. Applications to
four small peptides and to the ion channel KcsA are presented. Electrostatic potential values
generated by the reduced models are compared with the corresponding values obtained using
the original sets of atomic charges.

I. Introduction

The design of protein coarse-grain (CG) models and their
corresponding interaction potential functions are nowadays
an active field of research, especially for solving problems
such as protein folding and docking through, e.g., molecular
mechanics (MM) and molecular dynamics (MD) methods.1

Indeed, all-atom simulations may be out of practical com-
putational resources for macromolecules, and a strategy to
consider large size systems and long time scales in a
simulation consists in limiting the number of interacting
particles. Among the essential parameters involved in all-
atom and CG potentials, electrostatic interactions are of
crucial importance since they govern local and global
properties, e.g., their stability, flexibility, etc. Various ap-
proaches to evaluate electrostatic interactions are, e.g.,
reviewed by Dong et al.2 Nevertheless, evaluating the
adequacy of a particular method is not straightforward; a
presentation of this problem can, e.g., be found in the work
of Schutz and Warshel3 who discussed the choice of
dielectric constants.

Common approaches used to design a CG description of
a protein consist in reducing groups of atoms into single
interaction sites. For example, in the work by Skepö et al.,4

each amino acid (AA) is represented by a single spherical
site, with unit or nul electric charge. The authors studied a

proline-rich protein PRP-1 interacting with a mica surface
using Monte Carlo simulations. Curcó et al.5 developed a
CG model of �-helical protein fragments, where the AAs
are represented by two, three, or four blobs depending upon
the AA type, in accordance with a best fitting between Monte
Carlo (MC) all-atom and CG energies. In their work, the
AAs are depicted by the amide hydrogen atom, the oxygen
atom, the geometric center of the side chain (except for Gly),
and a fourth blob whose position depends on the AA type
(except for Gly, Ala, and Val). In the Basdevant et al. paper,6

each AA residue is modeled using one sphere located on
the geometric center of the backbone and one or two spheres
located on the geometric centers of the side chain fragments
(except for Gly). Differently, Pizzitutti et al.7 represented
each AA of a protein sequence by a charged dipolar sphere.
For each AA, one CG sphere is located on the center-of-
mass (com) of uncharged residues, while for charged
residues, one CG is assigned to the com of the neutral part
of the AA, and one CG is assigned to the com of the charged
part. Charged residues are Arg, Asp, Glu, Lys, and terminal
AAs. The authors show that, in protein association, their
model provides a good approximation of the all-atom
potential, if the distance between the protein surfaces is larger
than the diameter of a solvent molecule. In a recent work,
Zhang et al.8 proposed a method to define CGs that reflect
the collective motions computed by a principal component
analysis of an atomistic MD trajectory. Each CG site is the
com of a domain, i.e., a group of contiguous CR atoms that
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move in a highly correlated fashion. Very recently, Bereau
and Deserno9 presented a generic CG model for proteins with
one grain located on each of the N, CR, and C atoms and a
fourth grain on C�. Such a simple side chain description
was aimed at facilitating the parametrization of the corre-
sponding CG potential function.

The development of CG interaction potential functions is
generally made either from atomistic interaction potential10

or MD results11-13 via experimental data, such as B-factors,14

or from the fitting of a potential function achieved by
matching CG and atomistic distributions.13,15 For example,
Lyman et al.16 presented a new method for fitting spring
constants to mean square CG-CG distance fluctuations
computed from atomistic MD. One can also cite the inverse
MC approach17 used for iteratively adjusting an effective
CG potential function until it matches a target radial
distribution function. Noid et al.18,19 proposed a statistical
mechanics theory to check the consistency between CG and
all-atom models. More specifically, the parametrization of
the well-known MARTINI force field (FF), dedicated to MD
simulations of biomolecular systems, is based on the
reproduction of partitioning free energies between polar and
apolar phases of a large number of chemical systems.20,21

In that model, groups of four heavy atoms are represented
by a single interaction center, except for small ring-like
fragments. AAs, thus, consist of one to four side chain beads
and one backbone bead.21 Only four main types of interaction
sites are defined: polar (P), nonpolar (N), apolar (C), and
charged (Q). Each particle type has a number of subtypes,
which allow for a more accurate representation of the
chemical nature of the underlying atomistic structure. In
MARTINI, only AA residues Arg, Asp, Glu, and Lys are
charged. Such a description was, e.g., applied to protein
channels embedded in a lipid membrane environment.22 In
the UNRES model,23 a peptidic chain is represented by a
sequence of backbone beads located at peptide bonds, while
side chains are modeled as single beads attached to the CR
atoms, which are considered only to define the molecular
geometry. In the so-called SimFold CG description and
energy function, a mixed representation is used.24,25 Residues
of aqueous proteins are represented by backbone atoms N,
CR, C, O, and H and by one side chain centroid. In UNRES
and SimFold, electrostatic interactions are not explicitely
calculated using the Coulomb term like they are in the
MARTINI FF for charged AAs.

Basdevant et al.6 proposed an approach to determine
charges for their reduced models built on the com of
backbone and side chain groups of AA residues. Prior to
these studies, Gabdoulline et al.26 used a model that consisted
of a small number of point charges (monopoles) suitable for
the description of the intermolecular electrostatic interactions.
As later applied by Basdevant et al.,6 these charges were
derived from a fitting procedure applied to reproduce the
molecular electrostatic potential (MEP) obtained by solving
the Poisson-Boltzmann equation. In their example, the
charges are located at the geometric centers of the head
groups of the charged residues. The mimick of all-atom
electrostatic interactions using a limited set of point charges
was also proposed by Berardi et al.,27 who applied a genetic

algorithm to determine the location and the values of a given
number of charges for molecules involved in liquid-crystal-
line materials. Extended multipolar models are also reported,
such as the one described by Golubkov et al.28 In that
approach, illustrated for small molecules, such as water,
methanol, and benzene, the charge distribution is represented
by a point multipole expression with charges (nul for the
hereabove examples), by a dipole, and by quadrupole
moments placed at the molecular com. These dipole and
quadrupole moments were set equal to the corresponding
average moments obtained from analyses of all-atom MD
simulations. In the framework of proteins, Cascella et al.29

presented a method to parametrize an AA reduced model
that allows reproduction of all-atom electrostatic properties
evaluated as averages during MD simulations for the side
chains and statistically for the backbones. Reviews on the
progresses of CG dynamical models can also be found in
additional references.30,31

Multiscale methods, that combine several levels of de-
scription, are also appealing since they allow to model limited
regions of space with details while representing the outer
regions by coarser models.32,33 The consideration of outer
influences, such as external stresses34 or solvent effects,35

can also be treated with CG approaches.

In the present paper, we propose a method to elaborate
coarse point charge models for protein structures from
smoothed MEPs. The quality of such models is approached
by comparing CG-based MEP and dipole values with the
corresponding all-atom properties. In a previous work,36 a
protein structure was decomposed into separate molecular
fragments that were determined through a merging/clustering
procedure of atom trajectories generated in progressively
smoothed electron density (ED) distribution functions. This
was followed by a second study37 where atoms were
clustered according to their trajectories defined in a smoothed
MEP function. That procedure allowed to locate the corre-
sponding MEP local maxima (peaks) and minima (pits). A
fitting algorithm was applied to evaluate the peak and pit
charges. Results, presented for the twenty AAs, were derived
from the all-atom Amber charges reported in Duan et al.38

With respect to that second paper, we have extended,
refined, and automated our approach, which now consists
of the three following steps. First, extrema corresponding to
the AA backbone are located in the smoothed MEP of a
�-pentadecapeptide Gly15 model. For the AA side chains,
the CGs are identified as extrema in the smoothed MEPs of
each of the 20 natural AA residues in their isolated state
from both the Amber99,39 as available in PDB2PQR,40,41

and Gromos43A142 sets of charges. Gromos charges were
taken from the files provided with the software SwissPDB-
Viewer.43,44 Second, charges are assigned to each of the CGs
through a charge-fitting procedure applied to reproduce
unsmoothed MEP grid values and dipole moments. Third, a
library of the resulting AA point charge templates, including
CG locations and their charge values, is built for further
modeling of proteins.

In Section II, we present a brief overlook of the theoretical
background. In Section III, we describe the methodology to
design the CG templates of the AAs from the pentadecapep-
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tide �-Gly15 and the isolated AA models as well as from
their associated atom charges. Finally, in Section IV, we
detail applications to four small peptides and to the ion
channel KcsA. Let us finally note that further in the text: (i)
we will use the expressions “reduced” and “CG” indiffer-
ently, and (ii) that all three-dimensional (3D) illustrations
were generated with OpenDX45 unless otherwise stated.

II. Theoretical Background

In this section, we present the mathematical formalism that
was used to design a protein-reduced representation and its
corresponding point charges. First, the smoothing algorithm
is described. This description is followed by the mathematical
expressions that are specific to the Coulomb electrostatic
interaction function. Finally, we detail the approach applied
to calculate the CG point charges.

A. Smoothing Algorithm. To follow the trajectories of
the local maxima and minima in a MEP function, as a
function of the degree of smoothing, we implemented an
algorithm initially described by Leung et al.46 The authors
initially proposed a method to model the blurring effect in
human vision. This was achieved by filtering a digital image
p(x) through a convolution product with a Gaussian function
and by assigning each data point of the resulting p(x, t) image
to a cluster via a dynamical equation built on the gradient
of the convoluted image:

where h is defined as the step length. We adapted this idea
to 3D images, such as ED and MEP functions, f, such as:

where r stands for the location vector of a point in a 3D
function, such as a MEP field.

The various steps of the resulting merging/clustering
algorithm are as follows: First, at scale t ) 0, each atom of
a molecular structure is considered as either a local maximum
(peak) or minimum (pit) of the MEP function. All atoms
are consequently taken as the starting points of the merging
procedure. Second, as t increases from 0 to a given maximal
value tmax, each point moves continuously along a gradient
path to reach a location in the 3D space where 3f(t) ) 0.
From a practical point of view, this consists of following
the trajectory of the peaks and pits on the MEP distribution
surface calculated at t according to eq 2. The trajectory search
is stopped when |3f(t)| is lower or equal to a limit value,
gradlim. Once all peak/pit locations are found, close points
are merged if their interdistance is lower than the initial value
of ∆1/2. The procedure is repeated for each selected value of
t. If the initial ∆ value is too small to allow convergence
toward a local maximum or minimum within the given
number of iterations, then its value is doubled (a scaling
factor that is arbitrarily selected), and the procedure is
repeated until final convergence.

B. Molecular Electrostatic Potentials. The electrostatic
potential function generated by a molecule A is simply
calculated as a summation over its atomic contributions:

where Ra is the position vector of atom a, and qa is the
electric charge. A smoothed version can be expressed as:

where the error function erf can be calculated using the
analytically derivable expression:47

The values of the parameters p and a are: p ) 0.3275911,
a1 ) 0.254829595, a2 ) -0.284496736, a3 ) 1.421413741,
a4 ) -1.453152027, and a5 ) 1.061405429.47 Equation 4
is identical to the expression found in the potential smoothing
approach, a well-known technique used in MM applica-
tions.48

C. Calculation of Point Charges. Charge values were
obtained using the charge-fitting program QFIT.49 Among
the approaches that are reported in the literature, e.g., either
excluding the MEP grid points that are located too close or
too far from the molecular structure under consideration or
including grid points located at large distances up to 30-45
Å from the molecular center,26 we selected the first approach
to modulate the influence of the neighborhood of the AA
under interest. Indeed, we wished to establish AA CG
charges that are as independent as possible on the selected
models. All MEP grids were built using either the Amber9939

or Gromos43A142,43 point charges, assigned using the
software PDB2PQR,40,41 with a grid step of 0.5 Å. Fittings
were achieved by considering points located at distances
between 1.4 and 2.0 times the van der Waals (vdW) radius
of the atoms. These two limiting distance values were
selected after the so-called Merz-Singh-Kollman scheme.50

In all fittings presented, the total electric charge and the
magnitude of the molecular dipole moment were constrained
to be equal to the corresponding all-atom Amber99 or united-
atom Gromos43A1 MEP values. The quality of the fittings
was evaluated by two root-mean-square deviation (rmsd)
values, i.e., the rmsdV determined between the MEP grid
values obtained using the fitted charges and the reference
unsmoothed MEP grid values and the rmsdµ evaluated
between the dipolar value calculated from the fitted CG
charges and the reference dipole moment of the molecular
structure. All dipole moment components were calculated
with the origin of the atom coordinates set to (0. 0. 0.).

III. Results and Discussion

This section is dedicated to the elaboration of coarse point
charge models of proteins based on the local maxima and
minima observed in their smoothed MEP functions. After
selection of the best smoothing degree to work at, the first
two steps of our strategy rely on the CG description of the
protein backbone and the development of side chain CG

x(n + 1) ) x(n) + h∇xp(x, t) (1)

rf(t) ) rf(t-∆t) +
∆

f(t)
∇f(t) (2)

VA(r) ) ∑
a∈A

qa

|r - Ra|
(3)

VA,t(r) ) ∑
a∈A

qa

|r - Ra|
erf( |r - Ra|

2√t ) (4)

erf(x) ) 1 - (a1T + a2T
2 + a3T

3 + a4T
4 +

a5T
5)e-x2

with T ) 1
1 + px

(5)
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models. Each stage involves the determination of CG
locations and corresponding electrostatic point charges. The
final part of the section focuses on the application of our
CG models to four small peptides (PDB access codes 2EVQ,
1BXX, 1BC5, and 2RD4) and to the tetrameric ion channel
KcsA (PDB access code 1BL8).

As mentioned earlier, to determine the backbone-reduced
representation, we limited our study to a fully extended
peptide model made of 15 amino acids, i.e., �-Gly15. That
particular peptide sequence was chosen to minimize the
interference between the central Gly residue Gly8 and the
whole peptide structure as well as to get a nul charge on
Gly8. The concept of “interference” is solely based on the
CG description that can be obtained for various secondary
structures. We indeed showed that the MEP-based clustering
results are highly dependent on the peptide conformation.37

For the studied pentadecapeptide �-Gly15, end residues were
not charged. At first, this may sound artificial, but the
presence of a large negative or positive charge in the structure
strongly affects the homogeneity of the CG distribution along
the peptide chain.37 Figure 1 illustrates the local extrema
observed in the MEP of �-Gly15 characterized by charged
ends built from the Amber99 charges and smoothed at t )
1.25 bohr2 using eq 4. In this figure, one notices the presence
of point charges in the close neighborhood of the C and O
atoms of all residues but the two end ones. The two terminal
AAs involve point charges on NH3

+ and COO- only. The
volume embedded by the negative and positive isocontours
is also varying along the chain, increasing or decreasing
toward COO-, respectively. This reflects variations in the
corresponding CG point charge values.

The structures of the isolated AAs involved the
(CR-CdO)AA(N-H)AA+1 backbone atoms so as to allow the
merging of the (CdO)AA and (N-H)AA+1 atoms, as observed
in �-Gly15. The consideration of isolated AAs is part of a
strategy to favor CG models to approximate all-atom
representations. That strategy was selected to reduce the
mutual influence of the backbone atoms on the side chain
descriptions. It was indeed observed, in a previous study on
Gly7-AA-Gly7 structures,37 that for AAs like Asp and Phe,
the side chain CG representation is dependent on its
conformation and on the presence of the backbone, respec-
tively. Let us also mention that treating separately backbone
and side chain CG descriptions was, e.g., applied by Cascella
et al.29 in their method to evaluate protein electrostatic

potentials as summations over backbone dipolar and side
chain multipolar contributions.

To generate the 3D structure of all AAs studied in this
work, the simulated annealing (SA) procedure implemented
in the program SMMP0551,52 was applied to pentadecapep-
tide models, i.e., Gly7-AA-Gly7 structures, with Ω, Φ, Ψ,
and � dihedrals constrained to predefined values. The
ECEPP/3 FF53 and SA default running parameters were
selected. Each SA run consisted in a first 100-step equilibra-
tion MC Metropolis stage carried out at 1 000 K. Then the
procedure was continued for 50 000 MC Metropolis iterations
until the final temperature, 100 K, was reached. The lowest
potential energy structure generated during each run was
kept. Isolated AA structures were then obtained by pruning
the optimized pentadecapeptides.

The hierarchical decompositions of the molecular struc-
tures from MEP functions were carried out with the following
parameters: t ) 0.05-3.0 bohr2, ∆init ) 10-4 bohr2, gradlim

) 10-6 e-/bohr2.
A. Selection of the Smoothing Degree. As illustrated in

Figure 2 for residue Trp, the CG description of an AA is
dependent on the smoothing value t. At t ) 0.05 bohr,2 peaks
and pits observed in the MEP are closely located on the
atoms of the molecular structure. Starting at t ) 0.3 bohr,2

the extrema begin to move away from the atomic centers
and their number decreases. At t ) 2.5 bohr2, there are only
three extrema left on the side chain of the AA.

To select the optimal smoothing degree for the building
of the reduced models, we used the charge-fitting algorithm
QFIT49 and applied it, with the same conditions as reported
in Section II, to each set of peaks and pits obtained for the
�-Gly15 structure at various smoothing levels. The resulting
minimal objective function (MOF) values are reported in
Figure 3. The MOF function is built on the rmsdV and rmsdµ
values defined in Section II. The best fittings, corresponding
to a dipolar description of each AA backbone (Figure 4),
were obtained at t ) 1.25 and 1.3 bohr2 for Amber99 and
Gromos43A1, respectively, i.e., MOF ) 1.76 and 0.48. For
Amber99, the loss of one CG between t ) 1.25 and 1.3 bohr2

involves a steep rise in the MOF value, followed by a slower
decrease observed up to t ) 1.9 bohr.2 Between t ) 1.5 to
1.9 bohr,2 the better fit is due only to a more adequate
arrangement of peaks and pits, their number being constant,
i.e., equal to 30 (Figure 3). For Gromos43A1, the MOF
values are well below the corresponding values obtained with
the Amber99 FF. This is due to the fact that Gromos43A1
is already a united-atom FF. Indeed, most of the atoms in
alkyl groups, for instance, have a nul electric charge. Beyond
t ) 1.3 bohr,2 the fitting is less and less efficient due to a
progressive change in the location of the CGs with respect
to the original structure. Models obtained for �-Gly15 at t )
1.25 and 1.3 bohr2 for Amber99 and Gromos43A1, respec-
tively, contain 32 and 31 CGs (Figure 4 and Table 1). In
this sense, the application of the smoothing algorithm to the
MEP function levels out the differences between the all-
atom and united-atom FFs, but the CG charge values differ
(Table 1), as explained in the next paragraph.

B. Protein Backbone Modeling. As announced here-
above, to generate a regular point charge distribution for the

Figure 1. Amber99 MEP isocontours (blue plain surface:
-0.03; red mesh: 0.03 e-/bohr) of �-Gly15 with charged NH3

+

and COO- ends, as obtained by smoothing the original MEP
at t ) 1.25 bohr2. Local maxima and minima (black spheres)
were obtained using the hierarchical merging/clustering al-
gorithm applied to the all-atom Amber99 MEP function.
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backbone, an extended geometry characterized by Ω ) 180°,
Φ )-139°, and Ψ ) 135° was considered. Indeed, for MEP
analyses, the conformation of the peptide appeared to be

extremely important on the results of the merging/clustering
algorithm applied to MEP functions.37 Fitted CG charges of
structure �-Gly15, depicted in Figure 4, are reported in Table

Figure 2. Amber99 MEP isocontours of Trp in a conformational state corresponding to the g-,g-rotamer, smoothed at various
values of t. Local maxima and minima (black spheres) were obtained using the hierarchical merging/clustering algorithm applied
to the all-atom Amber99 MEP function.

Figure 3. (Left) The MOF of the charge fittings of �-Gly15 CG points vs the unsmoothed Amber99 (plain line) and the Gromos43A1
(dashed line) MEP values. (Right) Number of local minima and maxima observed in the smoothed MEPs, as a function of the
smoothing degree t.
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1. For Amber99, positive and negative charges located near
the C and O atoms of the central residue Gly8 are equal to
( 0.244 e- and are separated by a distance of 2.52 Å. rmsdV
and rmsdµ values are equal to 1.33 kcal/mol and 0.16 D.

For Gromos43A1, the two-site CG description of each AA
backbone differs. Rather than being located along the CdO
axis of a residue, as in the case of Amber99, it is displaced
such as the positive charge is closer to the H atom of the
neighboring residue (Table 1), and the two opposite charges,
equal to ( 0.177 e-, are separated by a distance of 3.66 Å.

Our CG models are, thus, of an intermediate description
level between representations that involve only one grain
per AA backbone, like in the MARTINI20,21 and the
Basdevant’s6 models, and finer descriptions that allow to
more precisely account for the various secondary structure
elements of a protein.9 A dipolar representation of the
backbone of AAs will appear to be useful in applications
where the dipolar character of AAs is important, as further
illustrated in the KcsA case.

C. Protein Side Chain Modeling. CG representations of
each of the 20 AA side chains were obtained by considering
the AAs in specific conformational states. Except for AA )
Gly and Ala, most recurrent rotamers were generated by
taking into account the angular constraints given in Table 2.
These rotamers were selected according to their occurrence
degree in protein structures as reported in the Structural
Library of Intrinsic Residue Propensities (SLIRP).54,55 As
already mentioned, from the pentadecapeptide chains
�-Gly7-AA-Gly7 generated using SMMP05,51,52 only the
central AA residue was kept with backbone atoms
(CR-CdO)AA(N-H)AA+1. This was achieved to avoid the
generation of side chain CGs that might depend on a
particular secondary structure motif. As already specified
above, we considered the following protonation states:
Lys(+1), Arg(+1), Glu(-1), and Asp(-1). For Gln, it
appeared that both specific conformations first selected to
represent classes g-, t, Ng+ and g-, t, Og+ led, through
the program SMMP05, to an identical 3D structure. We, thus,
kept only one structure, g-, t, Og+ and summed over the
two initial weights reported in SLIRP to get a value of 28.6.
Similarly, Gln conformations representing classes g-, t, Og-
and g-, t, Ng- led to only one rotamer, with a total weight
of 33.2. This occurred for another AA, His, for which two
conformers, depicting classes g-, Ng- and g-, Cg-, are
characterized by a total weight of 35.8.

In a further step, we determined the charge values for the
CG descriptions of each AA through a fitting procedure
carried out using QFIT49 vs unsmoothed all-atom MEP grids.
In this procedure, and for each of the AAs, all rotamer
descriptions in terms of peaks and pits observed in the
Amber99 and Gromos43A1 MEPs, smoothed at t ) 1.25
and 1.3 bohr2, respectively, were considered according to
their occurrence probability (Table 2). This step was carried
out in four stages. First, isolated AA structures were assigned
atom charges using PDB2PQR.40,41 Side chain extrema were
located using our merging/clustering algorithm. Second, the
corresponding charge values were fitted vs the all-atom MEP
generated from the side chain atoms only. Third, the
backbone CGs were added in accordance with the motif
found for Gly8 in �-Gly15, and fourth, a second charge-fitting
procedure, now carried out vs the MEP calculated using all
the AA atoms, was achieved to determine the charge values

Figure 4. MEP isocontours (blue plain surface: -0.03; red
mesh: 0.03 e-/bohr) of �-Gly15 smoothed (top) at t ) 1.25
bohr2 using Amber99 and (bottom) at t ) 1.3 bohr2 using
Gromos43A1. Local maxima and minima (black spheres) were
obtained using the hierarchical merging/clustering algorithm
applied to the original MEP functions. CG points are numbered
as in Table 1.

Table 1. CG Charges q (in e-) of �-Gly15 Fitted vs the
Unsmoothed Amber99 and Gromos43A1 MEP Grids Using
the Program QFITa

Amber99 Gromos43A1

no.
closest
atom d q

closest
atom d q

1 N Gly1 0.978 -0.1401 O Gly1 0.522 -0.2470
2 H Gly1 1.038 0.0762 H Gly1 0.698 0.0885
3 CR Gly1 1.104 0.2616 H Gly2 0.555 0.1695
4 O Gly1 0.538 -0.2753 H Gly3 0.441 0.1959
5 C Gly2 0.769 0.2543 O Gly2 0.555 -0.1772
6 O Gly2 0.545 -0.2612 H Gly4 0.461 0.1750
7 C Gly3 0.803 0.2479 O Gly3 0.568 -0.1828
8 O Gly3 0.560 -0.2452 H Gly5 0.463 0.1794
9 C Gly4 0.794 0.2421 O Gly4 0.565 -0.1778
10 O Gly4 0.556 -0.2427 H Gly6 0.464 0.1769
11 C Gly5 0.798 0.2408 O Gly5 0.567 -0.1781
12 O Gly5 0.559 -0.2413 H Gly7 0.465 0.1786
13 C Gly6 0.796 0.2428 O Gly6 0.566 -0.1773
14 O Gly6 0.558 -0.2425 H Gly8 0.465 0.1766
15 C Gly7 0.797 0.2430 O Gly7 0.567 -0.1783
16 O Gly7 0.558 -0.2435 H Gly9 0.465 0.1785
17 C Gly8 0.796 0.2440 O Gly8 0.567 -0.1771
18 O Gly8 0.558 -0.2439 H Gly10 0.466 0.1771
19 C Gly9 0.797 0.2450 O Gly9 0.567 -0.1782
20 O Gly9 0.559 -0.2445 H Gly11 0.465 0.1777
21 C Gly10 0.796 0.2417 O Gly10 0.567 -0.1773
22 O Gly10 0.558 -0.2433 H Gly12 0.468 0.1776
23 C Gly11 0.796 0.2479 O Gly11 0.567 -0.1777
24 O Gly11 0.558 -0.2426 H Gly13 0.466 0.1754
25 C Gly12 0.796 0.2343 O Gly12 0.567 -0.1764
26 O Gly12 0.558 -0.2448 H Gly14 0.468 0.1766
27 C Gly13 0.796 0.2588 O Gly13 0.567 -0.1729
28 O Gly13 0.560 -0.2454 H Gly15 0.436 0.1586
29 C Gly14 0.786 0.2580 O Gly14 0.576 -0.1802
30 O Gly14 0.565 -0.2574 C Gly15 0.542 0.1637
31 C Gly15 0.585 0.3158 O Gly15 0.665 -0.1673
32 O Gly15 0.666 -0.2406
rmsdV 1.33 0.69
rmsdµ 0.16 0.15

a Local maxima and minima at t ) 1.25 and 1.3 bohr2,
respectively, were obtained using the hierarchical merging/
clustering algorithm applied to the original Amber99 and
Gromos43A1 MEP functions. For each point, the distance vs the
closest atom, d, is given in Å. RmsdV and rmsdµ are given in
kcal/mol and D, respectively. Point numbers (no.) refer to Figure 4.
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of the two backbone CGs, while preserving the side chain
CG charge values first obtained.

It is to be specified that, for some AA residues, the initial
peak/pit-based CG representation obtained for their side chain
was replaced by a simpler model consisting of one point
centered on a selected atom, as detailed below. This was
achieved as a first stage in the easy design of a CG protein
model from its atom coordinates retrieved from the PDB,56,57

as in ref 37.
In Figures 5 and 6, we report the so-obtained original or

simplified CG representations for the 20 AA residues as
derived from the results of our hierarchical merging/
clustering algorithm applied to the Amber99 and Gromos43A1
MEP functions, smoothed at t ) 1.25 and 1.3 bohr2,

respectively. Corresponding CG charges and deviations of
the electrostatic properties vs the all-atom ones are reported
in the tables provided in the Supporting Information. With
Amber99 (Figure 5), all noncyclic C-H based residues, i.e.,
Ala, Ile, Leu, and Val, have no side chain points. This was
chosen because of the low charge values obtained initially
for their CGs and was an easy way to model those specific
residues in possible MM applications. For Lys, we also
simplified the model by setting the positive charge exactly
on the Nς atom (point three). For all other AAs, the original
point locations observed in the smoothed MEP functions
were kept for the charge-fitting procedures. As illustrated in
Figure 5, we note that for hydroxyl-containing residues, i.e.,
Ser, Thr, and Tyr, there are two charges located near but
not exactly on the O and H atoms (points three and four for
Ser and Thr; points six and seven for Tyr). A similar
representation is obtained for the sulfur-containing residues
with a charge close to the S atom and a charge in the
neighborhood of the H atom (point four for Cys) or CH3

group (point four for Met). For the negatively charged
residues, i.e., Asp and Glu, each carboxylate functional group
leads to two negative charges located near the O atoms
(points three and four). Positively charged residues, Arg and
Lys, present different behaviors. While the side chain of Lys
leads to only one positive charge value (point three), the Arg
side chain is characterized by a four-point motif (points three
to six), wherein each charge is somewhat symmetrically
located on the bisectors of each of the three N-C-N angles
of the guanidinium group.

Regarding side chain descriptions obtained using
Gromos43A1 (Figure 6), alkyl chains such as Ala, Ile, Leu,
and Val do not involve any CG. This is also observed for
Met. Indeed, for these AAs, the only charged atoms in the
united-atom model are the backbone N, H, C, and O atoms.
The CG description of Arg differs from the Amber99-based
representation, as there is only one positive charge initially
located in the neighborhood of the atom Cς. We have
simplified the Arg CG model by fixing that CG point exactly
on Cς (point three).

Let us additionally mention that for Asp, Glu, and Phe,
an identity in the charge values was imposed such as q3 )
q4, q3 ) q4, and q4 ) q6, respectively, as reported in Tables
3 and 4. One also directly notices that some charges are
displaced toward the outer part of some AAs, as in Phe,
where H atoms seem to be associated with charges located
away from the side chain. Even if this, at first, looks
unnatural, it was nevertheless decided to keep such original
charge distributions, as they correspond to real topological
features of the smoothed MEP functions.

A comparison between two models reported in literature
and our two MEP-based CG models of the AA side chains
generated from the Amber99 and Gromos43A1 sets of
charges is reported in Table 5. AA residues are listed
according to their properties defined in the MARTINI FF,21

i.e., hydrophobic residues, mainly classified as apolar, polar
residues with or without hydrogen-bond-forming character-
istics and charged side chains. Such a description, known to
lack an electrostatic contribution, is nevertheless interesting
to compare with as it involves the concept of polarity. It is

Table 2. Geometrical Parameters and Occurrence
Probability of the Selected AA Side Chain Rotamers54,55

with the Exception of Ala and Glya

conformation �1 (°) �2 (°) �3 (°) �4 (°)
occurrence

(%)

Arg g-, t, g-, g- 300 180 300 300 9.5
g-, t, g-, t 300 180 300 180 11.9
g-, t, g+, t 300 180 60 180 12.2
g-, t, t, t 300 180 180 180 12.2

Asn t, Nt 180 0 11.1
t, Og- 180 300 21.3
t, Og+ 180 60 23.6

Asp t, g+ 180 60 62.8
Cys g- 300 56.3

g+ 60 15.1
t 180 28.7

Gln g-, t, Nt 300 180 0 11.2
g-, t, Og- 300 180 300 33.2
g-, t, Og+ 300 180 60 28.6

Glu g-, t, g- 300 180 120 29.9
g-, t, g+ 300 180 60 25.3

His g-, Ng- 300 300 35.8
t, Ng+ 180 60 15.0

Ile g-, g- 300 300 22.7
g-, t 300 180 28.3
g+, t 60 180 42.5

Leu g-, t 300 180 65.2
t, g+ 180 60 24.1

Lys g-, g-, t, g- 300 300 180 300 8.5
g-, g-, t, g+ 300 300 180 60 6.5
g-, t, t, g- 300 180 180 300 21.7
g-, t, t, g+ 300 180 180 60 14.3

Met g-, g-, g- 300 300 300 15.5
g-, g-, t 300 300 180 11.6
g-, t, g- 300 180 300 19.4
g-, t, g+ 300 180 60 16.4
g-, t, t 300 180 180 15.4

Phe g-, g- 300 300 37.8
t, g+ 180 60 31.5

Pro g+ 0 66.8
Ser g- 300 73.1

g+ 30 24.8
Thr g- 300 51.6

g+ 30 46.3
Trp g-, g- 300 90 28.2

g-, t 300 0 16.5
t, g- 180 60 11.6
t, g+ 180 300 13.8
t, t 180 0 11.2

Tyr g-, g- 300 120 38.3
t, g+ 180 60 31.7

Val g- 300 46.4
t 180 51.9

a g and t stand for gauche and trans, respectively.
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also one of the few descriptions that is easily available in
the literature for all AAs. Parallely, we report a description
of the Basdevant’s model,6 which is interesting as it is close
to representations based on ED maxima described earlier.36,58

For all residues, the backbone CG representation consists
either of one polar bead (MARTINI), one center (Basdevant),
or two CGs with opposite charges (our models).

The total number of side chain CGs in each model is
variable. The number of grains in the Basdevant’s model is
strongly dependent on the size of the side chains but does
not exceed two. For MARTINI, it is higher than two only
for ring-shaped side chains, i.e., Phe, His, Trp, and Tyr. In
the case of our MEP-based CG representations, there are up
to six CGs for Trp. For all small hydrophobic residues, the
MARTINI CG representations involve only one apolar grain.
Parallely, in both MEP-based models, there is no side chain
CGs. For Phe, our models involve a large number of points,
i.e., four for both Amber99 and Gromos43A1. The charge
brought by each of the side chain CGs of Phe stays low,

with |q| < 0.10 e-. Sulfur-containing residues, especially Cys,
that are hydrophobic and do not form any H-bond, are
however characterized by a dipole moment. In MARTINI,
they are, thus, represented by one CG with the intermediate
apolar/polar state. For the Amber99- and Gromos43A1-based
models, there are two CGs with opposite charges. Regarding
Asn and Gln, our MEP-based models provide a finer
description of the side chains, with three grains located at
the vicinity of the O and H atoms (Figures 5 and 6). In
MARTINI, these side chains are represented using one grain
characterized by a polar type with a hydrogen-bonding donor
and acceptor character. For all residues containing an O-H
group, i.e., Ser, Thr, and Tyr, our models include at least
two opposite charges located in the neighborhood of O and
H; they correspond to one polar group in MARTINI. The
side chains of His and Trp not only contain hydrophobic
rings but also hydrogen-bonding properties. In the framework
of our MEP-based models, they are represented by CGs with
a dipole occurring between HNδ and Nε in Hisδ, between

Figure 5. CG model for each of the 20 AA residues as established at t ) 1.25 bohr2 from the hierarchical merging/clustering
algorithm applied to the all-atom Amber99 MEP function. CG points are numbered as in the Supporting Information.
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HNε and Nδ in Hisε, and between HNε1 and the rings in
Trp. Details regarding point charge locations and values are
given in the Supporting Information. The polarity property
in MARTINI is, thus, expressed as a charge separation in
our models. Finally, regarding the residues that are explicitely
charged in the MARTINI FF, we observe a finer description
of the negative Asp and Glu residues in our models, with
two separate negative charges close to the O of the carboxyl
group. The Amber99-based CG model of Arg is rather
interesting and original as it involves three positive charges
almost symmetrically spread around the atom Cς, itself
associated with a fourth CG charge (Figure 5). This might
be seen as a description that is more consistent with a charge
delocalization.

Thus, on the average, one can consider that there is a
reduction ratio of about 4.5/1 between the CG and all-atom
MEP-based models. Knowing that the calculation time
evolves according to N2 and Nlog N, N being the number of
particles for the Coulomb pair potential and the particle mesh

Ewald (PME) algorithm, respectively, one expects reduction
ratios of CPU times of about 20 for the Coulomb potential
and, for example, about 5 for the PME routine in the case
of a protein with 100 000 atoms vs the all-atom representation.

D. Automated CG Generation Procedure. To study
systems that are larger than oligopeptides, an automation
stage was developed to avoid the lengthy generation of the
CGs for each AA separately, as first carried out.37 The
resulting automated procedure was fully based on the
application of a superimposition algorithm of CG motif
templates of each AA onto the corresponding AA structures
of theproteinunder study.Weused theprogramQUATFIT59,60

to, first, superimpose a limited set of atoms from the template
on the studied structure and then used the resulting trans-
formation matrix to generate the corresponding CG coordi-
nates.

The templates that were selected in this study are described
in Tables 3 and 4 for the Amber99 and Gromos43A1 FFs,
respectively. Their size consisted of at least three atoms so

Figure 6. CG model for each of the 20 AA residues as established at t ) 1.3 bohr2 from the hierarchical merging/clustering
algorithm applied to the Gromos43A1 MEP function. CG points are numbered as in the Supporting Information.
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Table 3. Template Coordinates (in Å) and Charges (in e-) as Used for the Amber99-Based CG Generation

X Y Z charge X Y Z charge

backbone
C 22.575 13.923 2.131
O 23.021 13.167 2.993
N 23.318 14.688 1.345
PT1 21.839 14.199 1.699 q1a

PT2 23.280 12.855 3.318 q2a

side chain
ARG
Nε 18.561 15.333 5.213 HISε
Cς 18.087 14.123 5.542 Cγ 18.921 15.161 2.698
NH1 17.049 13.606 4.871 Nδ1 18.437 15.752 1.543
NH2 18.651 13.432 6.542 Cε1 17.116 15.812 1.626
PT3 16.526 14.616 3.638 0.2780 Nε2 16.744 15.267 2.820
PT4 18.195 14.221 5.594 0.0555 Cδ2 17.833 14.874 3.469
PT5 19.530 14.832 6.483 0.4811 PT3 15.177 15.203 3.248 0.1803
PT6 17.112 12.282 5.831 0.2215 PT4 18.512 15.718 1.511 -0.2142
ASN PT5 17.525 14.157 5.209 0.0699
Cγ 21.154 16.268 3.071 PHE
Oδ1 22.355 16.412 3.224 Cγ 18.926 14.982 2.956
Nδ2 20.298 17.275 2.917 Cδ1 18.399 15.648 1.894
HNδ21 20.637 18.192 2.709 Cε1 16.993 15.816 1.788
HNδ22 19.315 17.114 3.009 Cς 16.173 15.310 2.748
PT3 18.536 16.868 2.689 0.1470 Cε2 16.700 14.643 3.810
PT4 22.863 16.544 3.245 -0.2340 Cδ2 18.106 14.476 3.916
PT5 20.335 19.138 2.987 0.0820 PT3 17.237 15.111 2.852 -0.0753
ASP PT4 16.307 16.902 0.127 0.0425
Cγ 21.094 16.293 3.152 PT5 14.140 15.609 2.572 0.0093
Oδ1 20.959 17.047 2.164 PT6 15.393 13.922 5.289 0.0425
Oδ2 21.670 16.583 4.223 SER
PT3 21.800 16.833 4.393 -0.4290 C� 20.443 14.916 2.987
PT4 21.037 17.390 2.124 -0.4290 Oγ 19.047 15.112 2.779
CYS Hγ 18.754 14.579 1.988
C� 20.432 14.938 2.963 PT3 18.804 15.397 3.193 -0.0997
Sγ 18.650 15.161 2.610 PT4 18.739 14.433 1.036 0.1547
Hγ 18.127 14.540 3.187 THR
PT3 18.679 15.325 2.115 -0.0705 C� 20.358 14.870 2.971
PT4 17.875 13.550 3.798 0.0515 Oγ1 19.001 14.913 2.536
GLN Hγ1 18.880 14.363 1.701
Cγ 18.930 15.114 2.699 PT3 18.660 15.285 2.856 -0.1157
Cδ 18.288 16.002 3.767 PT4 19.161 13.795 1.024 0.1682
Oε1 17.102 16.285 3.744 TRP
Nε2 19.135 16.423 4.701 Cγ 18.914 15.167 2.725
HNε21 19.656 15.761 5.240 Cδ1 17.884 14.443 3.185
HNε22 19.252 17.403 4.866 Nε1 16.676 14.963 2.769
PT3 18.923 15.585 3.173 0.1768 Cε2 16.950 16.087 1.998
PT4 20.178 15.240 5.492 0.0958 Cς2 16.065 16.958 1.352
PT5 16.632 16.505 3.781 -0.3215 CH2 16.638 18.008 0.644
PT6 19.738 18.140 5.034 0.0818 Cς3 18.021 18.142 0.611
GLU Cε3 18.919 17.280 1.251
Cδ 18.288 16.002 3.767 Cδ2 18.322 16.220 1.965
Oε1 17.754 17.063 3.377 PT3 17.891 15.125 2.830 -0.1380
Oε2 18.345 15.599 4.949 PT4 18.246 12.882 4.318 0.0963
PT3 18.270 15.634 5.269 -0.4410 PT5 15.128 14.269 3.159 0.1002
PT4 17.622 17.347 3.562 -0.4410 PT6 17.745 17.637 0.978 -0.0640
HISδ PT7 15.309 19.357 -0.386 0.0284
Cγ 18.921 15.161 2.698 PT8 18.696 19.982 -0.699 0.0068
Nδ1 18.437 15.752 1.543 TYR
Cε1 17.116 15.812 1.626 Cς 16.164 15.242 2.786
Nε2 16.744 15.267 2.820 OH 14.815 15.390 2.691
Cδ2 17.833 14.874 3.469 HH 14.590 15.887 1.852
PT3 16.613 15.212 2.909 -0.2306 Cδ1 18.097 14.402 3.947
PT4 19.443 16.282 0.260 0.1863 Cε1 16.669 14.558 3.847
PT5 18.531 14.300 4.885 0.0523 Cε2 16.946 15.786 1.815
MET Cδ2 18.374 15.629 1.915
Cγ 18.937 15.046 2.800 PT3 17.673 14.741 3.465 0.0406
Sδ 18.639 15.869 1.245 PT4 18.866 13.489 5.441 0.0498
Cε 19.506 17.402 1.535 PT5 15.831 13.569 5.556 0.0115
PT3 18.579 15.903 1.151 -0.0654 PT6 14.650 15.117 3.194 -0.1535
PT4 20.535 18.072 2.000 0.1154 PT7 14.781 16.345 1.047 0.1610

a Values of q1 and q2 depend on the AA type (Table SI1 in the Supporting Information).
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as to generate unique superposition results, i.e., CG coor-
dinates. For rigid side chains, such as His, Phe, and Trp,
more than three atoms were also used to better fit the whole
side chain plane. For Arg, more than three atoms were also
used to generate, at once, all CGs, within the frame of the
Amber99 FF. For Gln, points four and six of the Amber99-
based CG representation were generated using the template
formed by atoms Nε2, HNε21, and HNε22, while points

three and five were determined using atoms Cγ, Cδ, and
Nδ2. The Gromos43A1 CG model of the Gln side chain
contained only three points. Points three and five were
generated using the template formed by Nε2, HNε21, and
HNε22, while the location of point four was based on atoms
Cγ, Cδ, and Nδ2. Similarly, for Asn, points three and five
for Amber99 (or points four and five for Gromos43A1) were
generated using the template formed by atoms Nδ2, HNδ21,

Table 4. Template Coordinates (in Å) and Charges (in e-) as Used for the Gromos43A1-Based CG Generation

X Y Z charge X Y Z charge

backbone
C 22.575 13.923 2.131
O 23.021 13.167 2.993
N 23.318 14.688 1.345
PT1 22.478 15.192 0.748 q1a

PT2 23.357 12.902 3.371 q2a

side chain
ASN PHE
Cγ 21.154 16.268 3.071 Cδ1 18.399 15.648 1.894
Oδ1 22.355 16.412 3.224 Cε1 16.993 15.816 1.788
Nδ2 20.298 17.275 2.917 Cς 16.173 15.310 2.748
HNδ21 20.637 18.192 2.709 Cε2 16.700 14.643 3.810
HNδ22 19.315 17.114 3.009 Cδ2 18.106 14.476 3.916
PT3 22.823 16.442 3.455 -0.1910 PT3 17.269 15.144 2.896 -0.0936
PT4 18.479 17.146 2.969 0.1104 PT4 16.392 16.836 0.108 0.0386
PT5 20.388 19.047 2.427 0.0840 PT5 14.145 15.597 2.521 0.0163
ASP PT6 15.379 13.928 5.206 0.0386
Cγ 21.094 16.293 3.152 SER
Oδ1 20.959 17.047 2.164 C� 20.443 14.916 2.987
Oδ2 21.670 16.583 4.223 Oγ 19.047 15.112 2.779
PT3 21.645 16.781 4.010 -0.5000 Hγ 18.568 14.235 2.826
PT4 21.142 17.151 2.618 -0.5000 PT3 20.331 14.350 4.599 -0.1466
CYS PT4 18.819 12.975 3.200 0.1466
C� 20.432 14.938 2.963 THR
Sγ 18.650 15.161 2.610 C� 20.358 14.870 2.971
Hγ 18.127 14.540 3.187 Oγ1 19.001 14.913 2.536
PT3 18.642 15.763 2.474 -0.0299 Hγ1 18.880 14.363 1.701
PT4 17.761 14.191 3.407 0.0299 PT3 18.739 15.245 3.017 -0.1459
GLN PT4 19.133 13.940 0.949 0.1459
Cδ 18.288 16.002 3.767 TRP
Oε1 17.102 16.285 3.744 Cγ 18.914 15.167 2.725
Nε2 19.135 16.423 4.701 Cδ1 18.147 14.690 1.736
HNε21 19.656 15.761 5.240 Nε1 16.840 15.119 1.858
HNε22 19.252 17.403 4.866 Cε2 16.769 15.917 2.994
PT3 19.737 18.118 5.180 0.0850 Cς2 15.668 16.584 3.544
PT4 16.715 16.386 3.841 -0.2031 CH2 15.904 17.316 4.702
PT5 20.244 15.453 5.740 0.1182 Cς3 17.183 17.352 5.245
GLU Cε3 18.294 16.690 4.708
Cδ 18.288 16.002 3.767 Cδ2 18.038 15.953 3.534
Oε1 17.754 17.063 3.377 PT3 18.602 15.283 2.908 -0.1232
Oε2 18.345 15.599 4.949 PT4 15.743 14.810 0.939 0.1553
PT3 18.190 15.902 4.841 -0.5000 PT5 17.181 16.729 4.389 -0.1409
PT4 17.773 16.922 3.755 -0.5000 PT6 14.277 18.300 5.454 0.0466
HISδ PT7 17.248 18.565 6.949 0.0319
Cε1 17.116 15.812 1.626 PT8 19.915 17.376 5.998 0.0303
Nε2 16.744 15.267 2.820 TYR
Cδ2 17.833 14.874 3.469 Cς 21.930 18.777 3.647
PT3 18.980 16.087 0.718 0.2623 OH 22.401 20.040 3.824
PT4 16.431 15.172 3.065 -0.2623 HH 23.280 20.139 3.355
HISε Cδ1 20.825 17.132 2.281
Cγ 18.921 15.161 2.698 Cε1 21.324 18.469 2.469
Nδ1 18.437 15.752 1.543 Cε2 22.086 17.879 4.656
Cε1 17.116 15.812 1.626 Cδ2 21.587 16.541 4.468
PT3 15.789 15.256 2.998 0.2729 PT3 21.369 17.439 4.089 0.0148
PT4 18.719 15.839 1.336 -0.2729 PT4 24.024 20.132 2.845 0.1523

PT5 21.930 20.166 4.149 -0.1988
PT6 23.204 17.862 6.329 0.0153
PT7 21.719 15.562 6.013 0.0165

a Values of q1 and q2 depend on the AA type (Table SI2 in the Supporting Information).
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and HNδ22, while point four for Amber99 (or point three
for Gromos43A1) was obtained using Cγ, Oδ1, and Oε1.
In the case of Tyr, points three to five were located using
the template formed by ring atoms Cς, Cε1(or Cε2), and
Cδ1(or Cδ2) in the opposite direction to the O-H bond,
while points six and seven were generated using atoms Cς,
OH, and HH. A similar procedure is valid for the
Gromos43A1-based models of Tyr. For the AA residues that
are not reported in Tables 3 and 4, the CG coordinates were
directly obtained from the side chain atom coordinates as
specified in the tables reported in the Supporting Information.

Thus, from Tables 3 and 4, it is clear that CG points and
charges can be directly obtained from a high-resolution
structure/map of a protein, more precisely, from 3D atomic
coordinates. For some AAs, like Asn, Cys, Gln, Ser, Thr,
and Tyr, templates involve the knowledge of H atomic
coordinates. Presently, these atoms were not defined in the
PDB files but were added through the use of a software,
such as PDB2PQR40,41 and SwissPDBViewer.43,44 In the
case of lower crystallographic resolution maps, only a limited
number of ED maxima could be located. In previous
papers,36,58 we showed how regular motifs of ED peaks still
characterize AA backbone and side chains at resolution
values close to 3 Å. A deeper study would be needed to
relate the topology-based properties of these ED maxima,
i.e., location, main ED curvatures, and local eigenvectors,
to the positioning of the CG charges reported in Tables 3
and 4. Indeed, at the location of each ED maximum, a so-
called Hessian matrix, built on the second derivatives of the
density function vs the position, can be calculated. The

diagonalization of such a matrix provides three eigenvalues,
which physically define the main curvatures of the density
function at the peak location and the three corresponding
eigenvectors. Their orientation can help in locating CG
charges.

E. Application to Small Peptides. Four small peptidic
structures with electrostatic properties reported in the litera-
ture were selected. The first structure, a 12-residue �-hairpin
HP7 was retrieved from the PDB56,57 (PDB code 2EVQ)
following the work of Basdevant et al.6 The primary structure
of that peptide is Lys-Thr-Trp-Asn-Pro-Ala-Thr-
Gly-Lys-Trp-Thr-Glu, with a global net charge of +1.
It is an interesting reference structure because a fragment-
based description, as well as the corresponding point charges,
were provided.6 In that representation, each pseudoatom is
defined as the geometric center of the heavy atoms of a
protein fragment. Structure of two other peptides, i.e., the
Tgn38 internalization peptide Dyqrln, with sequence Asp-
Tyr-Gln-Arg-Leu-Asn, (PDB code 1BXX) and the
C-terminal fragment of the chemotaxis receptor, with se-
quence Asn-Trp-Glu-Thr-Phe, (PDB code 1BC5) were
studied following the work of Exner and Mezey.61 Addition-
ally, we selected the structure of a phospholipase inhibitor,
with sequence Leu-Val-Phe-Phe-Ala, (PDB code 2RD4)
involved in the A�7 structure studied by Pizzitutti et al.7

For each of those peptides, CG models were obtained by
applying the automated procedure specified above. End
charges were considered by including two additional charges,
one on each of the terminal atoms N and OXT. By default,
the corresponding charge values were set equal to ( 1. The

Table 5. Descriptionsa of Protein Side Chain CG Models, as Defined in MARTINI, in Basdevant’s model, and As Obtained
from the Hierarchical Merging/Clustering of MEP Functionsb

MARTINI20,21 Basdevant6 Amber99 Gromos43A1

Gly - - - -

small hydrophic residues
Ala - 1 - -
Ile 1 apolar 1 - -
Leu 1 apolar 1 - -
Pro 1 apolar 1 - -
Val 1 apolar 1 - -

large hydrophobic residue
Phe 3 apolar 2 4 |q| < 0.08 e- 4 |q| < 0.10 e-

sulfur-containing residues
Cys 1 apolar/polar 1 2 2
Met 1 apolar/polar 2 2 -

polar amide-containing residues with H-bond property
Asn 1 polar 1 3 3
Gln 1 polar 2 4 3

small hydrophilic residues with OH group
Ser 1 polar 1 2 2
Thr 1 polar 1 2 2

ring-shape hydrophobic residues with H-bond property
His 1 apolar, 2 polar 2 3 2
Trp 3 apolar, 1 polar 2 6 5
Tyr 2 apolar, 1 polar 2 5 5

charged residues
Arg 1 apolar/polar, 1 charged 2 4 1
Asp 1 charged 1 2 2
Glu 1 charged 2 2 2
Lys 1 apolar, 1 charged 2 1 1

a Descriptions are in terms of number and property. b At t ) 1.25 bohr2 using Amber99 and t ) 1.3 bohr2 using Gromos43A1.
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quality of the Amber99-based CG model is evaluated vs the
all-atom one in Table 6. It is achieved in terms of the rmsdV
and rmsdµ deviation values. When no charge fitting is
applied, models 1BC5 and 2RD4 approximate fairly well
the all-atom electrostatic properties, while models 2EVQ and
1BXX are less well reproduced, especially at the level of
the dipole moment values. For example, the sign of µy is
inversed. While keeping all charges constant but the two end
ones, we then applied a charge-fitting procedure that led to
better models, with end charges qend lower than unity.
Models, and especially their dipole approximation, can, thus,
be largely improved by fixing the end charges to absolute
values lower than 1 e-. However, we consider this improve-
ment as the reflect only of altered end charges, i.e.,
modifications that depend on the particular protein structure
under study. It is rather artificial to modify two AA models
to approximate a global protein property, such as its dipole.
The fitting of all CG charges obviously leads to largely better
approximations with rmsdV and rmsdµ values ranging
between 1.54-1.90 kcal/mol and 0.09-0.60 D, respectively.
For comparison, we also fitted the charge values of the
Basdevant’s representation, with less efficiency, i.e., rmsdV
) 5.27 to 8.74 kcal/mol and rmsdµ ) 1.37 to 4.82 D. A

similar discussion is valid for the Gromos43A1-based CG
model (results are provided in the Supporting Information).
However, let us mention that keeping qend to unit values is
observed to be a good choice for that particular set of
charges. Indeed, for each of the four peptides studied, the
fitting of the end charges led to absolute qend values ranging
between 1.02 and 1.06 e-. That model, thus, appears to be
characterized by more robust transferability properties than
that of the Amber99-based one. It is assumed that Amber99-
based CG models would provide better approximations of
the all-atom representations if established at a less drastic
smoothing degree. In conclusion, one observes, from the
rmsdV and rmsdµ values, that the use of our model provides
a good approximation of the all-atom MEPs, especially when
end charges are fitted. A point charge model based on the
com of the AA side chains and backbones is efficient too
but requires a charge-fitting step that is not needed in our
case. Additionally, the charge values that would be obtained
using a full charge-fitting procedure are strongly dependent
on the 3D conformation of the molecule. As illustrated in
Figure 7 for Amber99, wherein CG-based MEP isocontours
and projected values of the MEP onto the 0.0002 e-/bohr3

ED isosurface are compared vs the corresponding all-atom

Table 6. Electrostatic Properties of the Amber99-based CG Model of Small Peptides vs Their Corresponding All-Atom
Versiona

charge fitting

nonec qend onlyd all CGe Basdevantd

2EVQ 197 atoms
q 1.0
µ (all-atom)b 4.78, -2.21, -66.43
no. of CGs 51 51 51 28
rmsdV 5.98 3.63 1.54 5.27
rmsdµ 9.29 2.00 0.25 1.37
µb 1.50, 2.46, -73.76 3.54, -2.99, -67.81 4.67, -2.01, -66.33 4.89, -2.49, -65.10
qend (1.0000 (0.7660

1BXX 110 atoms
q 0.0
µ (all-atom)b 11.34, -0.96, -15.73
no. of CGs 32 32 32 15
rmsdV 6.03 3.52 1.90 7.09
rmsdµ 12.65 1.79 0.34 2.47
µb 21.06, 6.64, -12.96 12.31, -1.51, -14.33 11.62, -0.82, -15.60 13.55, -0.14, -14.99
qend (1.0000 (0.8532

1BC5 90 atoms
q -1.0
µ (all-atom)b -310.92, -287.53, 7.06
no. of CGs 29 29 29 13
rmsdV 5.73 3.02 1.72 8.59
rmsdµ 9.02 1.49 0.09 4.82
µb -308.68, -296.26, 6.90 -312.11, -286.69, 6.75 -310.98, -287.55, 7.12 -311.29, -282.99, 5.50
qend (1.0000 (0.8589

2RD4 88 atoms
q 0.0
µ (all-atom)b 35.12, 22.63, -44.04
no. of CGs 20 20 20 12
rmsdV 4.40 3.25 1.62 8.74
rmsdµ 5.80 2.60 0.60 3.51
µb 39.38, 22.10, -47.94 35.71, 20.10, -43.84 34.66, 22.26, -44.14 34.98, 22.72, -40.53
qend (1.0000 (0.9162

a RmsdV and rmsdµ are given in kcal/mol and D, respectively. Electric charges are given in e-. b X, y, and z components of µ. c No
charge-fitting applied. d Charge-fitting applied to end charges qend only. e Charge-fitting applied to all CG charges. d Charge-fitting applied to
Basdevant’s model.
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properties, only local differences are clearly visible, espe-
cially at the close proximity of the molecular structure. There
is a good correspondence between the CG and all-atom MEP
3D properties. A similar discussion is valid for the
Gromos43A1 results provided in the Supporting Information.

F. Application to the Potassium Ion Channel KcsA.
The protein structure selected to test our automated procedure
was the KcsA potassium channel (Figure 8), a transmem-
brane protein structure that is commonly used to model
biological ion channels22,62-64 as well as to evaluate
computational approaches in the study of protein electro-
statics.65-67 It is formed by four identical chains, each chain
containing two R-helices connected by a loop located in the
channel region (Figure 8). The channel consists of the so-
called selectivity filter, that is about 18 Å long, pointing to
the extracellular region, a larger cavity of about 10 Å and a
15 Å long narrow gating pore opened toward the intracellular
region. The gating pore and the cavity are hydrophobic
regions, while the selectivity filter, mainly formed by five
residues Thr74-Thr75-Val76-Gly77-Tyr78, is covered
by in-line carbonyl O atoms of the protein backbone, which
build a structure that is similar to a water solvation shell
around a K+ ion.

In the present work, the 3D model of the protein was
prepared according to the X-ray crystal structure of the KcsA
K+ channel (PDB access code 1BL8) by adding missing side
chain atoms using the program SwissPDBViewer.43,44 The
design of the His residues into a Hisε configuration was
achieved with the program VEGA ZZ.68,69 The three K+

ions, labeled K401, K402, and K403 (Figure 8), were not
considered. Atom charges were assigned using PDB2PQR.40,41

From an original structure of 5 888 atoms, the application
of our automated procedure, completed by the addition of
unit charges on the N and OXT atoms of the end residues
of each of the four monomers, led to the generation of 1 284
and 1 204 CGs in the frameworks of the Amber99 and

Figure 7. Amber99 MEP isocontours (blue plain surface: -0.07, red mesh: 0.07 e-/bohr) and MEP projected on the ED surface
defined at 0.0002 e-/bohr3 (blue: negative, red: positive) of peptides 2EVQ, 1BXX, 1BC5, and 2RD4. (a) Unsmoothed all-atom
MEP, (b) CG with fitted qend MEP with CGs (black spheres), (c) all-atom MEP on ED isocontour, and (d) CG with fitted qend MEP
on ED isocontour.

Figure 8. 3D conformation and secondary structure of the
potassium channel KcsA (PDB code 1BL8). Two monomers
only, chains A and C, are displayed. Figure was generated
using SwissPDBViewer.43,44 Ions K401 and K403 are sepa-
rated by a distance of 10.62 Å.
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Gromos43A1 FFs, respectively. The obtained reduction
ratios, slightly larger than 4.5/1, is close to the 4/1 value
reported by Bond and Sansom,70,71 who studied the interac-
tion of membrane proteins with lipid molecules through MD
simulations. A visualization of the rmsd values obtained
between the atoms of the AA templates and the correspond-
ing atoms of the protein crystal structure, for each of the
superimpositions achieved using QUATFIT59,60 during the
CG generation, is presented in Figure 9. The largest rmsd
values, i.e., beyond 0.1 Å, correspond to a less efficient fit
of the four end residues Gln119 required to design the
Amber99-based CG model due to the terminal OXT atoms
(Figure 10, left). The lowest rmsd values, around 0.01 Å,
characterize the superimpositions of the backbone templates,
while all larger rmsd values, from 0.02 to 0.06 Å, character-
ize the superimpositions of the side chain templates. Par-
ticularly, rmsd values around 0.05-0.06 Å originate from
the superimpositions of the Tyr side chains. For example,
Tyr82 of chain A that led to rmsd ) 0.057 Å is illustrated
in Figure 10 (right), where one can see that it nevertheless
corresponds to a rather good superimposition of the three
template atoms Cς, OH, and HH.

The resulting full KcsA CG models are characterized by
dipole moments and total charges that are reported in Table

7, both for the Amber99 and Gromos43A1 FFs. In the case
of the Amber99-based model, as the number of CGs is too
large to allow any charge fitting procedure, we simply
modified the end charge values qend and observed that qend

) 0.5 e- provided a model characterized by deviation values
rmsdV and rmsdµ that are equal to 8.28 and 0.58 D,
respectively. It is to be compared to the values of 7.38 kcal/
mol and 81.60 D obtained when qend ) ( 1 e- is used (Table
7). The original MEP grid values were best approached when
qend ) 0.8 e- with a lower rmsdV ) 6.13 kcal/mol but this,
however, led to rmsdµ ) 48.94 D, a value that is acceptable
considering the magnitude of the dipole moment, i.e.,
1411.36 D.

Visualizations of 3D MEP isocontours, generated from
MEP maps built with a grid step of 0.5 Å (Figure 11), do
not permit to clearly differentiate the MEPs calculated using
the original sets of charges (Figure 11, left) from those
calculated using the CG models (Figure 11, right). Finer and
more quantitative comparisons were, thus, achieved. MEP
profiles were calculated using the original atom charges along
the channel axis, defined by the Cartesian coordinates of ions
K401 and K403 (Figure 12). As illustrated, the channel axis
region of the selective filter region is characterized by two
MEP minima, followed by a large energy barrier which
covers the hydrophobic cavity and narrow pore regions. The
calculation of the corresponding MEP profiles using the
Amber99- and Gromos43A1-based CG models generate
similar behaviors, very close to their all-atom version. In
that sense, the models presented in this paper led to better
approximations than those obtained in a previous approach,37

wherein AA CG models were generated using pentadecapep-
tide structures rather than isolated structures. It seems that
decoupling backbone and side chain contributions in the
elaboration of a CG model is interesting for reproducing all-
atom electrostatic properties.

IV. Conclusions and Perspectives

In this work, we applied a hierarchical merging/clustering
algorithm to molecular scalar fields, like molecular electro-
static potential (MEP) functions, to generate coarse point
charge representations of proteins. Through the use of such
a procedure, the reduction of a molecular structure repre-
sentation, particularly a protein structure, was achieved by

Figure 9. Occurrence frequency of the rmsd values calcu-
lated between the atom positions of the AA template motif
and the atom positions of the actual AA backbones or side
chains, over all superimpositions achieved for the generation
of the Amber99-based (plain line) and Gromos43A1-based
(dashed line) CGs of protein structure KcsA.

Figure 10. (Left) Amber99-based template motif (red spheres) of the Gln backbone as superimposed on Gln119 of chain A in
protein KcsA. The three atoms C, O, and N are used to generate the transformation matrix that is further applied to CGs numbered
1 and 2. (Right) Amber99-based template motif of the Tyr side chain as superimposed on Tyr82 of chain A in protein KcsA. The three
atoms Cς, OH, and HH are used to generate the transformation matrix that is further applied to CG points numbered 3 to 7.
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following the trajectories of its constituting atoms in its
progressively smoothed three-dimensional (3D) molecular
field. A protein structure can, thus, be described by a limited
set of points, which correspond to the local extrema (peaks
and pits) of the considered 3D MEP field. The aim of such
calculations further consisted in the evaluation of electrostatic
properties, such as point charges and dipole moments, of a
protein using coarse-grain (CG) descriptions.

The present work especially focused on the use of the sets
of charges of the all-atom Amber99 and the united-atom
Gromos43A1 force fields (FF) but is readily applicable to
other charge sets that are available in the literature. Reduced
descriptions were obtained for each of the 20 natural amino
acid (AA) residues with the following specific protonation
states: Arg(+1), Lys(+1), Asp(-1), and Glu(-1). Each of
the 20 AAs was modeled through various rotamers (except
for Ala, Asp, Gly, and Pro). The first stage was to apply our

merging/clustering algorithm to determine the CG locations
of the AA backbone and side chain, separately. In a second
stage, charges were assigned to these AA CG representations
through a charge-fitting algorithm and were further tabulated
as reference values to be used for CG modeling of protein
structures. MEP-based CG descriptions were shown to be
sensitive to the molecular conformation. Additional studies,
achieved at various levels of smoothing, showed that the
optimal value of t is only slightly dependent on the selected
FF charges. It is equal to 1.25 and 1.3 bohr2 for Amber99
and Gromos43A1, respectively.

An automated procedure was implemented and tested on
four small peptides (PDB access codes 2EVQ, 1BXX, 1BC5,
and 2RD4) and on a larger system KcsA, a tetrameric
potassium ion channel made of four 97-residue long mono-
mers (PDB access code 1BL8). The generation of the CG
representation of each residue was achieved through a

Table 7. Electrostatic Properties of the Amber99- and Gromos43A1-Based CG Models of Structure KcsA vs Their
Corresponding All-Atom Versiona

Amber99 Gromos43A1

total charge 4.0 4.0
µ (D) 1411.36 1402.76
µ all-atom (D)b 1303.10, 511.49, 179.54 1295.8, 511.82, 163.31
no. of CG points 1 284 1 204
reduction factor 4.6/1 2.1/1 vs charged atoms
qend ) ( 1.0 µ CG (D)b 1273.17, 512.15, 103.63 1293.14, 512.66, 156.49

rmsdV (kcal/mol) 7.38 2.78
rmsdµ (D) 81.60 7.37

a RmsdV and rmsdµ are given in kcal/mol and D, respectively. Electric charges are given in e-. b X, y, and z components of µ.

Figure 11. MEP isocontours (blue plain surface: -0.1, red mesh: 0.1 e-/bohr) of (top left) unsmoothed all-atom Amber99, (top
right) Amber-based CG with qend )( 0.5 e-, (bottom left) unsmoothed united-atom Gromos43A1, and (bottom right) Gromos43A1-
based CG with qend ) ( 1.0 e-, superimposed on the 3D structure of protein KcsA (sticks).
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superimposition algorithm of CG template motifs on the 3D
PDB structure. The study of the four peptides revealed that
end charges should be lower than unity for the Amber99-
based CG models and equal to unity for the Gromos43A1-
based CG models. For Amber99, the variability in the end
charge values is assumed to be the reflection of moderate
transferability properties. For the larger system KcsA, the
CG descriptions, consisting of 1 284 and 1 204 CG points
and their tabulated charges, in the frameworks of Amber99
and Gromos43A1, respectively, allowed to well reproduce
the trends observed in the unsmoothed all-atom MEP
functions.

Our calculations suggest that decoupling backbone and
side chain contributions in the elaboration of an AA CG
model is interesting for reproducing all-atom electrostatic
properties and that the location of CG steric centers, like
those defined by ED peaks or by centers-of-mass of specific
groups of atoms, differ from the location of CG electrostatic
centers. This might be a point to consider in the further
development of a CG FF.

During the elaboration of the MEP-based CG models, two
points were considered to be important to favor transfer-
ability. First, AAs were studied in the isolated state to neglect
the protein backbone conformation, and second, for each AA,
CG charges were obtained by considering various side chain
conformations. Though probably not sufficient to definitely
demonstrate transferability robustness of our models, the
results are encouraging, and they open an interesting exten-
sion to the present work, for example, in the comparison of
MEP calculated using the Poisson-Boltzmann formalism.3

One can also imagine two more direct ways to test transfer-
ability of Coulomb potentials built from MEP-based CG
models. The first one could consist in applying our procedure
to a larger set of protein structures. The other would ask for
a detailed comparison between MEP profiles calculated at
the all-atom and CG levels, and this, for all possible AA-
AA pairs. Finally, one could also elaborate for each AA type,
CG representations and/or charges that depend on the rotamer
class.

To directly link MEP and experimental ED distribution
functions, one could use databases of transferable multipolar
ED parameters for evaluating atom charges, as presented by

Zarichta et al.72 and preliminarly applied to the human aldose
reductase system,36 and then calculate MEP functions.
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Abstract: BcZBP is an LmbE-like, homohexameric, zinc-dependent deacetylase from the
opportunistic pathogen Bacillus cereus with three, thus far uncharacterized, homologues in B.
anthracis. Although its specific substrate is still unknown, the enzyme has been shown to
preferentially deacetylate N-acetylglucosamine and diacetylchitobiose via an active site based
on a zinc-binding motif of the type HXDDXnH. In the crystal structure, the active site is located
at a deep and partially blocked cleft formed at the interface between monomers related by the
molecular 3-fold axis, although the major, in structural terms, building block of the enzyme is
not the trimer, but the intertwined dimer. Here, we report results from a 50 ns molecular dynamics
simulation of BcZBP in explicit solvent with full electrostatics and show that (i) the view of the
intertwined dimer as the major structural and functional building block of this class of hexameric
enzymes is possibly an oversimplification of the rather complex dynamics observed in the
simulation, (ii) the most mobile (with respect to their atomic fluctuations) parts of the structure
coincide with three surface loops surrounding the active site, and (iii) these mobile loops define
the active site’s accessibility, and may be implicated in the determination of the enzyme’s
specificity.

1. Introduction

Bacillus anthracis has recently attracted significant interest,
mainly because of its putative usage as a biological weapon.1

Part of this interest was subsequently transferred to more
benign, but still closely related to B. anthracis, species like
B. cereus, an opportunistic bacterium causing food poison-
ing.2 In a drive to characterize, both functionally and
structurally, deacetylases that are shared between these two
organisms (and which may be implicated in metabolic
pathways of biotechnological and pharmaceutical interest),
we have recently reported the characterization, purification,
crystallization and crystal structure determination of BcZBP,
a homohexameric, LmbE-like, zinc-dependent deacetylase
from B. cereus.3-5 BcZBP is the product of the bc1534 gene,
with three, thus far uncharacterized, homologues in B.
anthracis sharing sequence identities (at the protein level)
of 96%, 28%, and 24%, respectively. Functional studies5
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showed that BcZBP preferentially deacetylates N-acetylglu-
cosamine and diacetylchitobiose, although its specific sub-
strate remains unknown. The overall structure of the enzyme
is shown in Figure 1A. It is a symmetric 32 (D3 in the
Schoenflies notation) homohexamer with a molecular mass
of 163 kDa and 234 residues in each monomer (we will
hereafter refer to these six chains using the letters A-F).
Their arrangement in the hexamer is such that chains A,C,E
form the first trimer and chains B,D,F the second. In the

crystal, the molecular 3-fold coincides with a crystallographic
3-fold axis of the R32 space group, leaving the equivalent
of two monomers (chains A and B, or equivalently C-D or
E-F) per crystallographic asymmetric unit. Each monomer
folds as a single R/� domain in the form of a four-layered
R/R/�/R sandwich (most easily seen in the lower monomer
of Figure 1B). The two trimers (of the hexamer) associate
strongly, mainly via contacts located around the 2-fold axes.
The first of these contacts is shown in Figure 1B and involves

Figure 1. Crystal structure of BcZBP. Panel (A) is a schematic diagram of the hexamer viewed down the molecular 3-fold axis
(which coincides with a crystallographic 3-fold of the R32 space group). The 3-fold passes through the geometric center of the
molecule, is perpendicular to the plane of the paper, and its position is marked with a filled triangle. The 2-fold axes of the
hexamer are on the plane of the paper, intersect the 3-fold at the molecular center, and their position is indicated by thin lines
marked with filled ovals. The trimer that is farthest from the viewer (and below the plane of the paper) is drawn using transparency
to reduce clutter. The arrow points to the monomer (of the lower trimer) that is colored green-orange in panels B and C. The
position of the active site in each monomer is marked by the presence of a space-filling representation of the zinc atom. Panels
B and C are views of the hexamer along the molecular 2-fold axes which are marked as b and c in panel A. In both cases, the
2-folds are perpendicular to the plane of the paper, pass through the molecular center and their position is marked with a filled
oval. The 3-fold axis is on the plane of the paper and is marked with a line ending in a filled triangle. The trimer that was drawn
transparent in panel A is now located toward the lower end of the page. To reduce clutter, only four monomers are shown in
panels B and C with two of them drawn semitransparent. The dimers shown in panels B and C are referred to in the text as type
I and type II dimers, respectively.
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an exchange of two short �-strands between the monomers
A-B (and equivalently, C-D and E-F). The second contact
(between monomers B-C, D-E, and A-F) is shown in
Figure 1C and corresponds to a typical ridges-into-grooves
R-helical association with an interhelix angle of approxi-
mately 25° and a mean helix-helix distance of 8 Å. We
will hereafter refer to these two types of dimers as “type I”
(shown in Figure 1B) and “type II” (shown in Figure 1C)
dimers, respectively.

The close, strand-exchange-based association seen in
Figure 1B led to the conclusion5 that the major structural
building block of BcZBP is the type I dimer, and not, for
example, the trimer or the type II dimer shown in Figure
1C. The view of BcZBP as a trimer of type I dimers was
further reinforced by the relatively loose association of the
monomers in the trimers as can be inferred from Figure 1A.
Still, this view of BcZBP as a trimer of dimers could not be
easily reconciled with two pronounced features of the crystal
structure: The first feature was a systematic difference
between the mean atomic temperature factors of the two
trimers, with one trimer having significantly higher thermal
parameters than the other. This observation was not consis-
tent with the view of the type I dimer as the major structural
and functional building block, mainly because such a dimer
comprises monomers belonging to different trimers (it should
be noted, however, that the presence of crystallographic
symmetry relating the trimers’ monomers, forces any devia-
tions in the overall atomic temperature factors to be at the
trimer’s level). The second feature was that the accessibility
to the active site appears to be mainly determined from loops
originating from neighboring monomers not involved in the
formation of the type I dimer. Furthermore, the crystal
structure’s active sites were partially blocked from three
surface loops of neighboring (in the trimer) monomers,
making it difficult to imagine the type I dimer as the
enzyme’s functional unit.

Here we present results from a 50 ns molecular dynamics
simulation on the BcZBP hexamer in explicit solvent and
with full electrostatics which was undertaken to characterize
the structural and dynamical properties of this enzyme with
emphasis on the properties of its hexameric association and
its active sites’ accessibility.

2. Computational Methods

2.1. System Preparation. Starting from the crystallo-
graphically determined coordinates of the BcZBP hexamer
(PDB entry 2IXD) missing side-chain and hydrogen atoms
were built with the program PSFGEN from the NAMD
distribution6 and assuming a neutral pH. The histidine
residues protonation state was determined according to their
chemical environment in the crystal structure. An explicit
solvent hexagonal periodic boundary system was prepared
using VMD.7 The unit cell basis vectors (projections along
the orthogonal axes) of the periodic cell were (111,0,0),
(0,90,52), and (0,0,103) Å with a shortest (initial) solute-solute
distance of 30 Å. The solvation system comprised 25938
pre-equilibrated TIP3 water molecules, with the crystallo-
graphically determined waters retained throughout the pro-

cedure, while those water molecules lying closer than 1.8 Å
from the protein surface (or the crystallographic waters) were
removed. The net charge of the solute was neutralized
through the addition of sodium and chloride ions to a final
concentration of ∼100 mM corresponding to the addition
of 33 sodium and 15 chloride ions. The final system
comprised a total 99744 atoms, of which 21834 protein
atoms, 6 zinc ions, 42 acetate atoms (located at the active
site), and 77814 water atoms. The topology and parameter
files used throughout the system preparation were those of
the CHARMM27 force field.8 The zinc ions were modeled
using the nonbonded representation9 implemented by the
CHARMM27 force field.

2.2. Molecular Dynamics Simulation Protocol. A 50 ns
molecular dynamics simulation was performed with the
program NAMD6 using the CHARMM27 force field8 as
follows. The system was first energy minimized for 2000
conjugate gradient steps with the positions of the backbone
atoms fixed, and then for another 2000 steps without
positional restraints. It was then slowly heated-up to a final
temperature of 298 K (with a temperature step ∆T ) 20 K)
over a period of 66 ps with the positions of the CR atoms
harmonically restrained about their energy-minimized posi-
tions. Subsequently the system was equilibrated for 200 ps
under NpT conditions without any restraints. This was
followed by a 50 ns production NpT run with the temperature
and pressure controlled using the Nosé-Hoover Langevin
dynamics and Langevin piston barostat control methods as
implemented by the NAMD program (and maintained at 298
K and 1 atm). The production run was performed with the
impulse Verlet-I multiple time step integration algorithm as
implemented by NAMD. The inner time step was 2 fs, short-
range nonbonded interactions were calculated every one step,
and long-range electrostatics interactions were calculated
every two timesteps using the particle mesh Ewald method.10

A cutoff for the van der Waals interactions was applied
through a switching function, and SHAKE was used to
restrain all bonds involving hydrogen atoms. Trajectories
were obtained by saving the atomic coordinates of the whole
system every 0.4 ps.

2.3. Trajectory Analysis. Generation of modified PSF
files was performed with X-PLOR.11 Calculation of the
anisotropic fluctuations was performed with the program
g_rmsf from the GROMACS suite of programs.12 Removal
of global rotations-translations, calculation of rms deviations
from the experimental structure, calculation of the average
trajectory structures, of the rms deviation from the average
structures, of the radius of gyration, of the atomic rms
fluctuations, the CR-CR distance map (and the corresponding
rms deviation from it), the cross-correlation matrix, and the
Cartesian13,14 and dihedral-angle15,16 principal component
analysis were performed with the program Carma,17 available
via http://www.mbg.duth.gr/~glykos/.

3. Results

3.1. The BcZBP Trajectory is Stable. The simulation
was stable, both with respect to its state variables and the
structure of the enzyme, with the notable exception of three
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surface loops which -as will be discussed later- surround the
enzyme’s active sites. This is shown in Figure 2A, which
depicts the root-mean-squared (rms) fluctuations of the CR

atoms’ positions (from their average) for the six monomers
and for the whole length of the trajectory. As can be seen
from this figure, the majority of atomic fluctuations are
significantly less than 1.0 Å with the exception of (a) the
first two and last three (N- and C-terminal) residues of each
monomer and (b) three surface loops extending from residues
42-51, 129-140, and 180-192. The same conclusions can
be drawn from the lower half of Figure 3, which depicts
(using a grayscale representation) the rms deviations of the
CR-CR distances from their average during the length of the
trajectory. The pronounced horizontal and vertical dark lines,
which are apparent in this diagram correspond to residues
with higher than average mobility with respect to the rest of

the structure, and, not unexpectedly, match closely the loop
regions identified from Figure 2A. The agreement between
the simulation-derived atomic fluctuations and the crystal-
lographically determined atomic temperature factors (allow-
ing for the fact that only two monomers are crystallograph-
ically independent) is quite high, with an average value for
the linear correlation coefficient (over all possible pairs of
monomers) of 0.70. The highly correlated values of the
experimental and simulation-derived atomic fluctuations,
together with the stability of the crystallographically deter-
mined structure (discussed below), provide further indications
for the validity and quality of the simulation protocol.

Examination of the linear correlation coefficients between
the per-residue atomic fluctuations of the various monomers
(Figure 2A), shows a notable pattern: the correlations
between monomers of type I dimers are relatively low at

Figure 2. Evolution of structure-dependent quantities during the molecular dynamics simulation. Panel A shows the root-mean-
squared fluctuations (in Å) of the CR atoms around their average positions during the whole length of the simulation. The graph
is a superposition of six curves (corresponding to the six monomers) with the horizontal axis corresponding to residue numbers.
The three highly mobile active-site loops are centered around residues 48, 135, and 186 (see text for details). For clarity this
diagram is truncated to 2.5 Å along the vertical axis, with the fluctuation values reaching out to 4 and 5 Å for the first and third
loop respectively. Panel B shows the rms deviation of the CR atoms of monomer C versus simulation time. The two graphs
shown in this panel were calculated either with the mobile loops included in the calculation (upper curve), or excluded (lower
curve). Panel C is the same calculation as for panel B, but using the CR atoms of the whole hexamer. Finally, panel D shows
the rms deviation of the CR atoms of the whole hexamer from their average positions during the length of the simulation (the
three mobile loops, see text for details, have been excluded from this calculation).
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0.70, 0.64, and 0.42, lower than the correlations between
type II dimers (at 0.89, 0.75, and 0.46). Moreover, they are
both lower than the values observed for monomers belonging
to the same trimer (0.97, 0.78, 0.85 for the A-C-E trimer,
0.84, 0.68, 0.82 for the B-D-F trimer). The higher values
of the linear correlation coefficient between monomers
belonging to the same trimer is consistent with the results
discussed in the next section.

Ignoring the three highly mobile loops, the structures of
both the individual monomers and of their relative arrange-
ment on the hexamer are well preserved during the simula-
tion. As shown in the upper curve of Figure 2B for a
representative monomer (monomer C), the rms deviation
from the starting (crystal) structure increases steadily through-
out the simulation, reaching values close to 2.5 Å. If the
three surface loops surrounding the active site are excluded
from the calculation, the results are significantly different
(Figure 2B, lower curve): the rms deviation from the crystal
structure quickly stabilizes to a value of approximately 0.8
Å and remains stable throughout the simulation. Similarly,
Figure 2C compares the behavior of the rms deviation from

the crystal structure with or without the active site loops,
but this time considering the CR atoms of the whole hexamer.
As can be seen from this figure, the effect of excluding the
active site loops from the calculation is again pronounced,
though less dramatic when compared with the monomer-
derived results. This indicates that there is a contribution to
the rms deviation arising from the intermonomer association.
Again, this is in agreement with the CR-CR distance
deviation map (lower half of Figure 3) which clearly shows
whole areas with higher than average rms deviations (note,
for example, the darker area corresponding to vectors
between the CR atoms of the B monomer and those of
monomers E and D).

In agreement with the results presented above, Figure 2D
shows the evolution (as a function of simulation time) of
the rms deviation between the trajectory’s average structure
and each and every of the structures observed during the
simulation (considering CR atoms only). As can be seen, the
structure quickly (within 5 ns) relaxes from the initial crystal
structure, and then remains stably close to its average with
deviations of approximately 0.6 Å going up to 0.8 Å near

Figure 3. Dynamics of the BcZBP hexamer. The upper triangle of the diagram is the normalized variance-covariance (cross-
correlation) matrix of the CR atoms. The color representation ranges from dark red, through yellow, to dark blue corresponding
to correlation values from +1.0 (fully correlated), to 0.0 (uncorrelated), to -1.0 (fully anticorrelated). To increase the contrast of
this diagram, a sigmoidal function of the form σ(x) ) 2/[1 + e(-3*x)] - 1 has been applied to the raw data. The areas of the
diagram corresponding to the various monomers of the hexamer are indicated with the letters A-F at the top and left-hand-side
of the matrix. The lower half of the matrix is a grayscale representation of the rms deviation of the CR-CR distances (and for all
possible pairs) from their average distances observed during the length of the trajectory (in other words, it is the rms deviation
map of the average CR -CR distance map). The grayscale gradient ranges from white (corresponding to an rms deviation of 0.0
Å) to black (corresponding to an rms deviation of 3.0 Å or more). The limits in terms of the individual monomers of the hexamer
are shown on the top and left-hand-side of the matrix.
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the end of the trajectory. The major differences between the
starting (crystal structure) and the trajectory’s average
structure can be accounted by a concerted relaxation of the
intermonomer association as indicated by an increase of the
mass-weighted radius of gyration from the starting value of
31.4 Å to a value of 32.1 Å after only 5 ns of simulation
time. Nevertheless, the rms deviation between the CR atoms’
positions in the average and crystal structures remains quite
low at 1.2 Å (excluding the active site loops).

3.2. The Hexameric Association Dynamics Are
Complex. The upper half of Figure 3 shows a pseudocolor
representation of the hexamer’s normalized variance-cova-
riance (cross-correlation) matrix. Apart from the (expected)
trend of strong positive correlations between atoms belonging
to the same monomer, the cross-correlation pattern appears
to be rather complex and inconclusive, especially about the
mode of intermonomer association within the hexamer. If
we compare the cross-correlation patterns observed for the
type I dimers (A-B, C-D, E-F) with those observed for
the type II dimers (B-C, D-E, A-F), we find that none of
these two association models is conclusively supported by
the simulation: there is strong positive correlation for the
(type I) A-B dimer, but negative for the (also type I) E-F
dimer. Similarly, there is positive correlation for the type II
D-E dimer but negative for the (also type II) B-C dimer.

The case of the E-F dimer warrants additional discussion
with respect to the �-strand-exchange dimerization motif:
focusing in the area of the matrix corresponding to cross-
correlations between the E and F monomers, note the thin
band of positive correlation connecting the C-terminus of
the F monomer with the whole of E. Similarly, there is a
thin band of positive correlation connecting the C-terminus
of the E monomer with the whole of F. Apart from these
two bands, the rest of the matrix in this area shows either
uncorrelated or even anticorrelated motion. What this implies
is that, at least for the case examined here, the exchanged
strands became integral parts of the monomers that receive
them, and that they do not affect the independence of
dynamics of the associating monomers. Clearly, even a
dimerization motif as strong and explicit as a �-strand-
exchange, can be surprisingly malleable with respect to
protein dynamics.

Turning our attention to the trimers, we note what is
possibly the most persistent characteristic of the matrix:
cross-correlations between monomers related by the molec-
ular 3-fold axis are mostly negative (see the matrix areas
defined by the monomer pairs A-C, A-E, and C-E for
the first trimer, B-D, B-F, and D-F for the second trimer).
This motif of anticorrelations is consistent with a ‘breathing’
motion of the trimers about the molecular 3-fold axis, in
agreement with the results from the principal component
analysis discussed in the next section.

For completeness we should note that the hexamer
dynamics model that best agrees with the variance-covariance
matrix is a rather unexpected one, as it involves the
interpretation of the data in terms of two dimers (of different
types) and of two independent monomers: Referring to Figure
3, the most prominent feature of the cross-correlation matrix
is the band of negative correlations connecting the A-B pair

of monomers with the D-E pair. Additionally, the cross-
correlations between the monomers A and B on one hand,
and monomers D and E one the other, are among the most
strongly positive of the matrix. Lastly, monomers C and F
appear to be mostly uncorrelated with all other monomers
of the hexamer. Taking these indications together, they
appear to suggest a 1 + 2 + 2 + 1 model for the hexamer
dynamics: four monomers (A, B, D, E) form a dimer of
dimers (A-B + D-E), which is capped on either side by
two independent monomers (C and F). This arrangement can
be indirectly visualized from Figures 1B and C if it is
assumed that these two views are related by a rotation of
180° about the 3-fold axis: the two semitransparent mono-
mers correspond to monomers C and F, which cap the two
(colored) dimers, one dimer of type I (Figure 1B) and one
of the other of type II (Figure 1C). Although this model
appears to explain most of the features of the cross-
correlation matrix, it is difficult (if not fundamentally
impossible) to reconcile with the intramolecular 32 sym-
metry. Indeed, a trajectory of a stable, symmetric, homo-
hexameric protein at equilibrium should, if sufficiently
sampled, give a cross-correlation matrix obeying the in-
tramolecular symmetry. We attribute the absence of sym-
metry from the matrix to the insufficient sampling of our
trajectory as discussed below.

3.3. Principal Component Analysis and Sufficient
Sampling. The relatively low and rather stable rms deviations
shown in Figure 2 (both in terms of the starting structures
and of the trajectory-average structures) may leave the
impression that the protein dynamics (especially at the
monomer level, Figure 2B) have been sufficiently sampled
during the simulation. As Figure 4 clearly indicates, this is
definitely not so: the projections of the CR atoms’ fluctuations
on the planes of their principal components deviate signifi-
cantly from two-dimensional Gaussians centered at the origin
(which is what we would expect from the trajectory of a
sufficiently sampled single-state protein structure at equi-
librium). Although there is a clear and significant difference
between the extend of fluctuations of the monomers and of
the higher-order oligomers, even the monomers’ principal
component projections show fine structure inconsistent with
sufficiently sampled dynamics. It could be argued that this
fine structure may correspond to functionally important
discrete conformational states of the BcZBP monomers (with
this line of argument being easily expandable to the whole
hexamer). But, if this were indeed the case and because of
the presence of intramolecular symmetry, we would expect
these substates to be correlated between the different
monomers. A cursory examination of the monomer diagrams
in Figure 4 indicates that this is probably not the case. To
resolve the matter in a quantitative way, we calculated the
overlap between the eigenvector-defined subspaces for all
possible monomer combinations and for the three eigenvec-
tors corresponding to the three largest eigenvalues. The
overlap between the subspaces defined by two sets v and w
of n eigenvectors is defined as

overlap(v, w) ) 1
n ∑

i)1

n

∑
j)1

n

(vi·wj)
2

3304 J. Chem. Theory Comput., Vol. 5, No. 12, 2009 Fadouloglou et al.



and takes values from zero (signifying no convergence of
the corresponding subspaces) to one (for full overlap of the
subspaces). Over all possible monomer combinations, the
average overlap value (for the top three eigenvectors) was
only 0.05 (with a standard deviation of 0.02). The highest
value observed was 0.10 between monomers C and D. What
these results clearly show is that the length of the simulation
has been inadequate to sample sufficiently even the mono-
mers’ dynamics, let alone the whole of the BcZBP hexamer.
This is in agreement with the indications obtained from the
cross-correlation matrix (see last paragraph of the previous
section). Similar results to those discussed above have been
obtained from a principal component analysis performed in

dihedral (φ, ψ) angle space (which is not sensitive to rigid-
body-like motion of protein domains or subdomains).

With the precautions necessitated by the lack of sufficient
sampling discussed above, we note the systematic difference
between the projections of fluctuations for monomers
belonging to different trimers (Figure 4, first row of graphs
vs second row): the extent of the atomic fluctuations on the
eigenvector planes are correlated at the level of the two
trimers, but not at the level of the type I or II dimers (the
fluctuations are systematically lower for the A-C-E trimer
compared with the B-D-F trimer). Such a systematic
difference at the trimers’ level was also observed when
considering the fluctuations from the average structures in

Figure 4. Cartesian principal component analysis: first vs second principal component plots for the BcZBP monomers (top
two rows), the hexamer (lower right), and a representative dimer and trimer (last row). All diagrams shown in this figure are
pseudocolor representations of density functions corresponding to the projections of the fluctuations of the CR motion
(excluding the active-site loops) on the planes of the top two eigenvectors (of the respective molecular species indicated
in the figure). For all graphs the origin is on the upper, left-hand side corner, values on all axes range from -35 to 35 Å
and the eigenvectors corresponding to the largest eigenvalues are along the vertical axes. The density function shown is
∆G ) -kBTln (p/pmax) where kB is Boltzmann’s constant, T is the temperature in Kelvin, and p and pmax are probabilities
obtained from the distribution of the principal components for each structure (frame) from the corresponding trajectory. As
a result of applying this function, the diagrams have units in kcal/mol with corresponding values for the minimum of the A
monomer of -3.51 kcal/mol, for B -3.30, C -3.19, D -3.27, E -3.52, F -3.35, for the A-B dimer -2.56, for the A-C-E
trimer -2.47, and, finally, for the hexamer -2.37 kcal/mol. Note that these values can only be compared between trajectories
of the same molecular species (in this case, only between monomers). Please also note that the ∆G values obtained from
this procedure are on an arbitrary scale in the sense that they depend on the binning procedure used for calculating the
p and pmax values. For all diagrams of this figure, the raw data were binned on a square matrix of size �N/2 where N is the
number of frames of the corresponding trajectory.
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section 3.1 above, and also during the analysis of the
variance-covariance matrix in section 3.2.

These indications concerning correlated dynamics at the
trimers’ level, prompted us to examine in more detail the
molecular motion associated with the trimers’ principal
components. The eigenvector with the largest contribution
to the intermonomeric association dynamics is the first one
(data not shown). The top panel of Figure 5 shows a smooth
representation of the ACE trimer’s motion due to the first
eigenvector considering only the CR atoms and ignoring the
flexible active-site loops. As can be seen from this figure,
there are indeed some indications of an anticorrelated motion
of the monomers about the molecular 3-fold axis. Such a
breathing-like motion of the monomers was also observed
when discussing the differences between the crystal structure
and the trajectory-average structure (section §3.1). To
quantify this statement, we have calculated sas a function
of simulation times the distances between the CR atoms of
the residues located at the tips of the loops which are closest
to the molecular 3-fold axis [Note that these distances were

obtained directly from the molecular dynamics trajectory and
not from the principal component-derived motion shown in
the top panel of Figure 5]. If the notion of a breathing-like
motion was supported by the raw simulation data, then these
distances should be correlated. The results from this calcula-
tion are shown in the lower graph of Figure 5. As can be
seen from this graph, the variation of the loop-closure
distances is indeed correlated, but not uniformly: the linear
correlation coefficient between the A-C and C-E distances
is 0.40, but is reduced to 0.20 for the A-C and A-E
monomers, and to 0.12 for the A-E, C-E combination.
Taking the results from these calculations together, they seem
to be consistent, at least within the limitations posed by the
lack of sufficient sampling, with the notion of a breathing-
like motion of the monomers about the molecular 3-fold.

The discussion above, together with the absence of
symmetry from the cross-correlation matrix shown in Figure
3, may create the impression that the symmetry of the
hexamer is not well preserved during the simulation. To
unequivocally show that this is not the case, we examined

Figure 5. Trimer dynamics: the upper panel stereodiagram (wall-eyed) is a smooth representation of the trimer’s CR motion
(excluding the active-site loops) as calculated from the first principal component only. The intramolecular 3-fold axis is perpendicular
to the plane of the paper and its position is noted by the filled triangle. The various structures shown superimposed are color-
coded from blue, via green and yellow, to red, and correspond to the structures obtained by applying (on the average structure)
the fluctuations corresponding to the first eigenvector weighted by a smoothly varying amplitude (obtained from the principal
component analysis, and ranging for this diagram from -19 to 19 Å). The graphs in the lower panel show the variation of the
distances between the tips of the three loops closest-to and surrounding the 3-fold axis (the loops immediately next to the filled
triangle in the upper panel). The actual distances (as observed in the trajectory) are shown as light-colored backgrounds. The
solid lines are averages which were calculated using a 40 ps window.
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the symmetry and structural conservation of the whole
enzyme using for our calculations its average structure
calculated over the length of the trajectory. This we did as
follows: In the first step, the average structure of monomer
A was least-squares superimposed on the average structures
of the other five monomers and the rms deviations between
their CR atoms (excluding the flexible loops) were recorded.
The values we obtained were 0.57 Å for the A-B monomers,
0.31 Å for A-C, 0.51 Å (A-D), 0.39 Å (A-E) and 0.44 Å
between the A and F monomers. This clearly shows that the
average structures of the six monomers are practically
identical, making unnecessary to calculate superpositions for
all their possible pairwise combinations. To examine the
preservation of symmetry, we converted the rotation matrices
(obtained from the least-squares superposition) to their
equivalent sets of polar angles (ω, φ, κ) and examined the
deviations of these angles from the values expected for a
hexamer of 32 symmetry (for, example, rotations with ∆κ

) 120° for the 3-fold axes or ∆κ ) 180° for the two-folds).
The average deviations of these polar angles from their ideal
values (for a perfect 32 hexamer) were as low as 0.9 degrees,
showing that the hexameric symmetry is almost perfectly
conserved during the simulation. This, however, creates a
conceptual problem: if both the symmetry and the structure
of the enzyme are so highly conserved, why the variance-
covariance matrix is not symmetrical (or, equivalently, why
its derived principal components have not converged) ? The
answer, we believe, is that the variance-covariance matrix
(and its principal components) are dominated by the small-
scale fluctuations of a very stable (but large) structure,
making convergence difficult to achieve within the time scale
of our simulation. To show that it is indeed the small-scale
fluctuations that dominate the PCA calculation, we recalcu-
lated the variance-covariance matrix, but this time we did
not normalize it, keeping its units in Å2. Taking the average
of the absolute values of the matrix (and excluding all
intramonomer correlations), we obtained a value of only
0.106 Å2 with a standard deviation of 0.166 Å2. If the flexible
loops are excluded from the calculation, then we obtain an
average value of 0.077 Å2 with a standard deviation of only
0.069 Å2. These results clearly show that the major contribu-
tion to the variance-covariance matrix (and its principal
components) is not large-scale correlated motion (which, if
present, would mask the absence of convergence for the
smaller-scale motions), but small-scale fluctuations about an
otherwise stable average structure.

3.4. Active-Site Loops: Mobility and Accessibility. The
stereodiagram shown in Figure 6B illustrates in a direct and
immediate way what has already been mentioned on several
occasions in the previous sections: the BcZBP structure, both
at the monomeric and oligomeric levels, is very well
preserved during the simulation with the exception of the
three loops that surround the enzyme’s active sites. As can
be inferred from Figure 6B, both the structural core of the
monomers and their relative orientations in the oligomer are
very stable as indicated by the excellent superposition of the
structures and the low rms fluctuations (indicated by the dark
blue color). In contrast, the three loops surrounding the active
sites, which are marked by the space-filling model of the

zinc atom, are exceedingly mobile as evidenced both by the
divergence of the various structures and the high rms
fluctuation values (indicated by the dark red color). For each
active site, the three loops surrounding it are contributed by
two neighboring (at the trimers’ level) monomers: the
monomer to which the active site belongs contributes two
loops, the first loop comprising residues 42-51 and the
second residues 180-192. The neighboring monomer con-
tributes the loop extending from residue 129 to residue 140.
We will hereafter refer to these three loops as L46, L185, and
L135. Comparison of the loop mobility for the three active
sites shown in Figure 6B shows a notable pattern: loops L46

and L185 have consistently higher mobility than L135 (this
can also be inferred from the graphs shown in Figure 2A).
Additionally, the amount of mobility observed for L46 and
L185 varies significantly between the various active sites
(compare, for example, the two active sites that are located
in the upper part of Figure 6B). Although the presence of
this variability in the atomic fluctuations may be connected
with the limited sampling discussed in section 3.3, the
molecular dynamics trajectory per se is remarkably self-
consistent with respect to the presence and the amplitude of
fluctuations of the hypermobile loops. To quantify this
statement we proceeded as follows: The rms atomic fluctua-
tions of all 1386 CR atoms of the protein were calculated
for two disjoined trajectory segments extending from 10 to
30 ns (for the first segment), and from 30 to 50 ns (for the
second). The value of the linear correlation coefficient
between the atomic fluctuations obtained from these two
segments was as high as 0.852, clearly indicating that the
molecular dynamics trajectory is internally consistent with
respect to the presence of the hypermobile loops. Addition-
ally, the fluctuations obtained from the two segments are in
excellent agreement with the results obtained from the whole
trajectory (and shown in Figure 2A) with corresponding
values of the linear correlation coefficient of 0.954 and 0.916.

It could be argued that the amount of loop mobility
observed in the trajectory is not the result of the protein
dynamics per se, but arises as an artifact of the nonbonded
representation of the zinc ions used for modeling the
enzyme’s active sites.18 This is clearly not the case for two
reasons. The first reason is that the protein residues involved
in zinc coordination (residues 12, 15 and 113) are outside
the limits of the mobile loops as described above. The second
and more important reason is that the geometries of all six
active sites are very highly conserved. To quantify this
statement, we calculated the rms deviation from the starting
(crystal) structure for all non-hydrogen atoms of all protein
residues that are involved in the zinc ion coordination. In
the case, for example, of monomer C, the mean rms deviation
(and for the whole length of the trajectory) was only 0.47 Å
with a standard deviation of 0.05 Å, comparable with the
expected coordinate error of the crystal structure. Such low
rms deviations for the active site residues clearly indicate
that the presence of hypermobile loops is not in any way
connected with the model chosen for the representation of
the zinc ions.

The amount of loop mobility seen on Figure 6B, im-
mediately possess the question of whether the motion of the
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active-site loops is correlated or not. This would have
functionally important implications since the presence of
correlated motion would suggest that the loops undergo a
concerted movement (as expected, for example, from a
periodic opening and closing of the active sites). To tackle
this question we once again resorted to the cross-correlation

matrix shown in Figure 3, this time examining only those
parts of the matrix that correspond to the L46, L185 and L135

loops. To avoid qualitative assessments we proceeded as
follows: In the first step, the entries of the matrix corre-
sponding to the cross-correlation values for the CR atoms of
the three loops were isolated. In the second step, we selected

Figure 6. Active-sites’ loop mobility and accessibility. Panel (A) shows the variation (as a function of simulation time) of the
area of a triangle defined by the CR atoms of Asp184 and Ser46 from monomer A, and Lys131 from monomer E. These three
residues lie at the tips of the three loops surrounding one of the enzyme’s active sites. Panel (B) is a stereodiagram (wall-eyed)
illustrating the mobility of the loops surrounding the active sites. The diagram corresponds to a superposition of structures obtained
directly from the molecular dynamics trajectory (after removal of overall rotations-translations). The view is down the molecular
3-fold axis, and to reduce clutter only one trimer is shown. The position of the active sites is marked by the space-filling models
(colored magenta) of the zinc atoms. The structures are colored according to their atomic (per CR) rms fluctuations using a
linear gradient ranging from dark blue to dark red. Finally, panel (C) shows two space filling models of the whole hexamer
(taken directly from the trajectory) illustrating the loop-dependent opening and closing of one of the active sites (see boxed area
of the diagrams).
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only those entries that corresponded to cross-correlation
values between CR atoms of different loops (that is, we
excluded values between atoms belonging to the same loop).
In the final step, we grouped these values with respect to
the active sites that the loops belonged to. The net result of
this procedure is a set of cross-correlation values between
the CR atoms of each loop, with each and every CR atom of
the two other loops that surround the same active site. The
numerical results obtained from these calculations were
conclusive: the average value of the cross-correlation coef-
ficient between atoms surrounding, for example, the active
site located between the A and E monomers is only 0.03
with a standard deviation of 0.14. Similar results have been
obtained for all the other active sites of BcZBP. The
implication of the preceding analysis is that the opening and
closing of the enzyme’s active sites is a stochastic process,
dependent on the random conformational changes of the three
loops.

Consistent with the notion of a stochastic process, Figure
6A shows the variation of the area of a triangle defined by
the tips of the three loops surrounding the active site located
between the A and E monomers. The area defined by the
three loops remains more or less stable at ∼45 Å2 for the
first 30 ns of the trajectory, and then an opening event is
recorded lasting for approximately 17 ns. During this opening
event, the area defined by the three loops more than triples,
reaching values as high as ∼170 Å2. To show unequivocally
the extend of this significant change in the active sites’
accessibility, Figure 6C compares snapshots (recorded di-
rectly from the trajectory) taken at 5 ns (diagram on the left,
active site closed) and at 37 ns (diagram on the right, active
site open). This very notable change in the active sites’
accessibility as seen in Figure 6C is amplified even further
if it is considered that the plane defined by the tips of the
three active site loops is not perpendicular to the viewing
axis (and so, the observed amount of opening is only a
projection of the real difference in active-site accessibility).

3.5. Active-Site Loops: Conservation and Specificity.
Figure 7 shows a multiple sequence alignment of BcZBP
with its three homologues from B. anthracis together with a
per residue conservation and quality score as calculated by
the program Jalview20 (note that the alignment shown is the
unedited result of a default run of the program T-coffee19).
The correspondence between the three hypermobile active-
site loops and the parts of the alignment with accumulated
gaps and low conservation score is striking, especially for
the L46 and L135 loops. Indeed, if the proteins’ termini are
excluded from consideration, then almost all low conserva-
tion regions from the alignment match exactly the three
active-site loops. An exception to this observation is the area
centered around BcZBP’s Lys154 which also shows very low
conservation and quality score. Although this region is also
close to the active site, examination of the BcZBP structure
suggests that it is rather unlikely for this area to be directly
involved with the active site accessibility and/or specificity.

Given the observed accumulation of insertions/deletions
and the low conservation score of the loops surrounding the
active site, it is tempting to speculate that these loops not
only contribute to defining the accessibility to the active sites

(see previous section and Figure 6A and C), but may also
be implicated in determining the enzymes’ substrate specific-

Figure 7. Multiple sequence alignment of BcZBP with its
three B. anthracis homologues. The three hypermobile active
site loops are noted with the shaded boxes and are marked
as L46, L185, and L135 (see text for details). The B. anthracis
proteins are denoted as: BA630 corresponding to NP_844007
(gi: 30261630), BA758 corresponding to NP_846135 (gi:
30263758), and BA425 corresponding to NP_845802 (gi:
30263425). The multiple sequence alignment shown is the
unedited result from a default run of the program T-coffee.19

The conservation and quality scores are as produced by the
program Jalview.20 The coloring of the amino acids corre-
sponds to the clustal color scheme as implemented by
Jalview. The portion of the alignment extending beyond the
end of the shortest sequence (BA425) is not shown for clarity.
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ity. Clearly, the specificity-related clause of the previous
sentence may appear as an overinterpretation of the data,
especially when it is partly based on something as inherently
inconclusive as a multiple sequence alignment. It could be
argued, for example, that accumulation of insertions/deletions
(and the corresponding low conservation scores) is exactly
what we would expect from surface exposed loops with no
functional or structural importance (and, thus, with low
pressure from natural selection). Although this would be an
otherwise valid argument, we find it hard to reconcile this
view with the image of the dynamics of these loops as seen
in Figure 6B and C. Indeed, it appears highly unlikely that
of all surface exposed loops present in the BcZBP structure,
only those loops surrounding the active sites have no
functional importance and thus escape the pressure of natural
selection. It should be noted, however, that in the absence
of solid experimental evidence in the form of a crystallo-
graphically determined structure of an enzyme-substrate
complex, it is impossible to take this analysis much further.
This is more so given the absence of firm knowledge
concerning the specific substrate of BcZBP.

4. Discussion

We have performed a state-of-the-art molecular dynamics
simulation of BcZBP in explicit solvent and with full
electrostatics. Analysis of the resulting trajectory showed not
only that the simulation per se was very stable but also that
the overall structure of the enzyme was very well preserved
with an average rms deviation at the monomers’ level of
approximately 0.80 Å. Analysis of the variance-covariance
matrix showed that the crystal structure-based view of the
enzyme as a trimer of dimers does not convey the complex
dynamics observed in the simulation and indicated that even
a dimerization motif as strong and explicit as a �-strand-
exchange, can show surprising plasticity with respect to
protein dynamics. Analysis of the pattern of atomic mobility
and fluctuations identified three hyper-mobile regions of the
BcZBP structure corresponding to the three loops surrounding
each of the hexameric enzyme’s active sites. Examination
of their mobility clearly indicated that at least in the case of
the apoenzyme, these loops are directly implicated in
determining the active site accessibility. Comparison of the
molecular dynamics results with the indications obtained
from a multiple sequence alignment with the B. anthracis
homologues, led to the hypothesis that these three active-
site loops may be implicated in determining the enzyme’s
substrate specificity.
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Abstract: We present a combined Quantum Chemical/Molecular Dynamics study on electronic
coupling between tryptophan-based donor and acceptor in oligopeptides of variable length.
Molecular dynamics was performed on Trp-(Pro)n-Trp (n ) 1 to 6) molecules in gas phase and
aqueous solvent and the electronic coupling matrix element was computed for thermal hole
transfer applying semiempirical INDO/S together with the generalized Mulliken-Hush approach.
For comparison, we also computed coupling values of 40 000 snapshots applying ab initio
Hartree-Fock, showing good agreement with the INDO/S results. We demonstrate that the
coupling values strongly fluctuate throughout the molecular dynamic trajectory and the
mechanism of electron transfer is affected by the presence of solvent through restriction of
the conformational space. Gas-phase calculations show gated electron transfer dominated by
direct through-space coupling due to strong conformational changes bringing donor and acceptor
in close vicinity. Solvent calculations establish a nongated mechanism dominated by bridge-
mediated coupling. In agreement with experimental data, our results point to a donor-acceptor
distance of ∼20 Å as a possible point for transition from superexchange to hopping electron
transfer mechanism.

I. Introduction

Protein-mediated electron transfer (ET) between separated
local donor and acceptor sites plays a central role in
biochemistry.1-5 For example, long-range electron transfer
over a distance of 10 to 30 Å is a process of major
importance in photosynthesis and respiration. In general,
electron transfer can be considered as a transition between
electronic states. Its rate is determined both by the coupling
between those electronic states and by the reorganization
energy needed by the system to adapt to its new state.

Although the motion of the electron is in fact instantaneously
on the time scale of nuclear motion, the rate of electron
transfer is generally slow when compared to that. Rate
constants can vary over many orders of magnitude due to
the roughly exponential dependence of the electronic-state
overlap on the donor-acceptor distance.6 Variations of this
distance dependence has been the subject of a dynamic
discussion between experimentalists7-9 and theoreticians10,11

in the last years and is still ongoing. Many of these studies
have focused on test systems of single-chained short oli-
gopeptides to get an easier understanding of the underlying
ET mechanism. Despite bridge-mediated superexchange
between donor and acceptor, electron transfer can also occur
through a process of incoherent hopping between localized
electronic states on the bridge.12 The respective contributions
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of the two mechanisms are dependent on the energy
difference between the donor- and bridge-localized electronic
states. The total rate constant of the system is then the
composite of both bridge-mediated superexchange and
sequential hopping mechanism. Experimental work on oli-
goproline between Ruthenium based donors and acceptors
has shown that electron transfer mechanism can also change
from a predominantly electron superexchange to a predomi-
nantly electron hopping mechanism when the peptide spacer
distance exceeds about 20 Å.13 Furthermore, recent studies
on protein electron transfer emphasize the importance of
tryptophans within these multistep electron transfers.14,15

Next to the distance, dynamical flexibility of the protein
and solvent has also a strong impact on the electronic coupling
between donor and acceptor. Recently there have been several
studies describing how conformational dynamics of proteins
strongly influence the donor-acceptor coupling,6,16-24 showing
that these observed fluctuations can be large and sometimes
within only the femtosecond time scale. Also, a recent study
on through-bond electron transfer in Ru-modified azurin
indicates the central role of valence angle fluctuations in
coupling dephasing.25 Furthermore, there exist recent studies
on U-shaped electron transfer systems where a highly curved
bridge imparts a vacant cleft along the line-of-sight between
the electron donor and acceptor.26-28 Semiempirical calcula-
tions show that electronic coupling between donor and
acceptor within these model systems results mainly from
direct coupling or coupling through bridging solvent mol-
ecules. This feature differs strongly from craned model
systems in which the coupling is mainly due to through-
bond contributions resulting in a linear decrease of direct
coupling with larger donor-acceptor distance.29-31 To
capture the dynamical behavior of the electronic coupling,
it is necessary to calculate the average over many snapshots
of a long molecular dynamics trajectory to cover full
conformational space of flexible model systems.16

The electronic coupling for the hole transfer process can
be calculated using the one-electron or Koopmans’ theorem
approximation.32,33 Within this scheme, the desired properties
of the adiabatic states for a radical cation can be ap-
proximated using one-electron energies and occupied mo-
lecular orbitals of the corresponding neutral (close-shell)
system.34 Computing the electronic coupling for large
systems is a challenge due to the amount of atoms involved
in the electron transfer. Avoiding the computational effort
to calculate donor-acceptor coupling values from ab initio
calculations,35 there exist several semiempirical approaches,
which allow analyzing the coupling of large proteins over
many snapshots. Among them are Extended-Hückel related
methods21,36,37 and the neglect of differential overlap (INDO/
S).38 Unlike the standard semiempirical schemes based on
the NDDO approximation (MNDO, AM1 and PM3), the
INDO/S method provides surprisingly good results for
electronic couplings39 and thus is widely accepted as a
feasible approximation for ET calculations, being subject of
much comparison against ab initio calculations.6,40,41

The aim of this article is to study the mechanism of thermal
hole transfer in oligopeptides in gas phase as well as aqueous
solution. Therefore, we calculate coupling values from

electronic properties derived from semiempirical INDO/S
calculations as well as more sophisticated Hartree-Fock
(HF) calculations to compare both levels of theory against
each other. The results show that the mechanism is highly
affected by the presence of solvent by means of restricting
the conformational space within the dynamics. On the basis
of recent studies on protein electron transfer indicating the
importance of tryptophans,14,15 we used a set of oligoproline
peptides of variable length linking tryptophan based electron
donors (D) and acceptors (A) as our test system.

II. Methods

Modeling Oligopeptide Structure and Dynamics. Oli-
gopeptide Trp-(Pro)n-Trp with n from 1 to 6 was assembled
using Schrödinger’s Maestro42 build utility, having the amino
group of the donor Trp and the acetyl group of the acceptor
Trp replaced by hydrogen atoms. For each peptide, we
prepared two different setups for the molecular dynamics
(MD): in gas phase and in aqueous solvent. Figure 1 shows
Trp-(Pro)n-Trp in gas phase as an example. For all of the
systems, we performed a 10 ns NVT trajectory at 298.15 K,
following a truncated Newton minimization and a short
equilibration (10 ps for vacuum and 100 ps for solvent). For
the n ) 4 case, we performed an additional 30 ns trajectory
in solvent to compare its mean donor-acceptor distance and
mean coupling value against the 10 ns trajectory. Snapshots
for the electronic coupling calculation were saved every
picosecond based on a donor-acceptor autocorrelation
analysis of the highly mobile system Trp-Pro2-Trp in gas
phase. Further explanation to this as well as the distance
autocorrelation plot is given in the Supporting Information.
Vacuum minimization, equilibration, and MD simulations
were performed with Impact43 using a nonbonded cutoff
value of 12 Å. Solvent simulation applied the SPC water
model44 in a cubic box of 10 Å buffer region, periodic
boundary condition, and the Ewald summations. Solvent MD
was performed with Desmond.45 The applied force field
throughout all the MD simulations was OPLS-2005.46 From
the production run, we extracted 10 000 snapshots, which
in the solvent cases include only a layer of 4 Å of waters
around the backbone of the oligopeptide to keep computa-
tional time of the electronic properties calculations as low
as possible.

Electronic Couplings. In biochemistry, many electron
transfer reaction haves only weak electronic coupling
between donors and acceptors. In this case, the ET rate can
be described by Marcus theory by the following high-
temperature nonadiabatic expression:1

Figure 1. Trp-(Pro)n-Trp in gas phase.
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Here, VDA is the electronic coupling between the diabatic
donor and acceptor states, p is Planck’s constant, kB is
Boltzmann’s constant, λ is the reorganization energy, T is
the temperature, and ∆G° is the overall Gibbs free energy
change of the electron transfer reaction. The coupling can
be derived by applying the generalized Mulliken-Hush
method (GMH)29,30 using electronic properties of the adia-
batic states of the system. How to apply the GMH scheme
within the one-electron picture of hole transfer is considered
in detail elsewhere.47 For simple systems like the one to
which we have applied a two-state model is a good
approximation, whereas for more sophisticated systems the
multistate model with bridge states has to be considered.
Applying the two-state model, the bridge-mediated electronic
coupling can be calculated through the following formula:

where ∆E12 ) E1 - E2 is the vertical excitation energy with
E1 and E2 being the energies of the two relevant adiabatic
states. µ12 is the transition dipole moment and |µD - µA| is
the difference of the diabatic dipole moments. Here, we can
estimate |µD - µA| as edDA or as ((µ1 - µ2)2 + 4 µ12

2)1/2.29,30

Here, it is important to use only the projection of the
transition and dipole moments onto the axis between the
donor and acceptor rather than the length of the vectors.
Furthermore, it is assumed that the two-state system is only
weakly coupled, meaning VDA < kBT. Koopmans’ theorem
states that the energies of occupied molecular orbitals for a
closed-shell system approximate the (negative) vertical
ionization potentials (-IP).32,33,48 On the basis of this
theorem, the adiabatic splitting, E12, is computed from the
energy difference of the highest occupied molecular orbital
(HOMO) and the next-highest occupied molecular orbital
(HOMO-1) of the neutral system approximating the two
quasi-degenerate electronic eigenstates of the ET system. We
are aware of the approximate description of the hole transfer
process in the systems considered. In particular, MD treat-
ment of radical cation states of oligopeptides (explicit
presence of a hole) can lead to structures that somewhat
deviate from the generated structures within this study.
However, we believe that averaging of the couplings over
many thousand conformations make our estimates quite
robust.

Quantum Mechanical Calculations. We carried out two
different levels of theory to derive the electron transfer
parameters, the semiempirical method INDO/S38 and ab initio
HF. The INDO/S calculations on the neutral oligopeptides
are carried out on all 10 000 snapshots of every trajectory
of Trp-(Pro)n-Trp with n from 1 to 6. We further distinguish
systems simulated in gas phase, systems simulated in explicit
solvent but solvent molecules omitted from electronic
property calculations (latterly denoted as solVated-conforma-
tion-only), and finally systems simulated in water keeping a
layer of 4 Å of waters around backbone of oligopeptide

(latterly denoted as solVated). Within the calculations, an
average of 2.75% of the models had to be omitted due to
the rare case of HOMO and HOMO-1 orbitals localizing into
the same site and thus making the coupling meaningless
in the sense of electron transfer between the two tryptophans.
All ab initio Hartree-Fock calculations were performed with
Jaguar.49 We carried out single point energy calculations
on all snapshots on solvated Trp-(Pro)3-Trp and Trp(Pro)6-
Trp with and without the water molecules included as point
charges in the quantum chemical calculations. We applied
the 6-31G* basis set on all atoms resulting in 774 basis
functions for Trp-(Pro)3-Trp and 1131 basis functions for
Trp-(Pro)6-Trp.

Statistical Analysis. We performed all data analyses with
the open source software package R.50 For one of these, we
applied the multivariate regression statistical method Partial
Least Squares regression (PLS-R),51 which is used to find
the fundamental relations between two matrices X and Y.
The method works by finding the multidimensional direction
in the X space that explains the maximum multidimensional
variance direction in the Y space, describing both X and Y
by a few latent variables also known as principal components
(PC). PLS-R models are usually built by extracting succes-
sive PCs, each one increasing the total percentage of Y
variance explained given by cumulative Q2, until the
predictive ability of the model is optimized. PLS-R is
particularly suited when there is multicollinearity among the
X values, where, by contrast, standard regression methods
will fail. A further advantage is the ability to extract
information about both the objects and the variables. The
objects can be represented graphically according to the PC
values, obtaining highly informative score plots in which
similar objects appear as points closely situated in the space.
In addition, the original variables can also be represented
according to their overall contribution to the model by
coefficient plots. These plots provide information about
which variables exhibit a relevant association with the
dependent variable, the direction of it, and if this association
is statistically significant.

III. Results and Discussion

Molecular Dynamics. The classical molecular dynamics
trajectories of the oligopeptide reveal a substantial mobility
of the peptide chains. Figure 2 shows the donor-acceptor
distance dDA, measured between the middle of bond CD2-
CE2 of the respective tryptophans, of all systems in gas phase
as well as in solvent. We checked the reliability of the
average values of the 10 ns trajectories by calculating dDA

from a 30 ns trajectory for Trp-(Pro)4-Trp in solvent. The
resulting average for 30 ns (Pro4*) has no significant
difference to 10 ns, indicating that the applied 10 ns
trajectories are representative for the behavior of the systems.

There are several insights derived from this plot. First,
mean dDA of every oligopeptide system is smaller in gas
phase than in solvent and second the variance of the distance
is higher in gas phase than in solvent, indicated by the box
size in Figure 2. Also, the minimum separation of the two
tryptophans in gas phase is a constant of about 5 Å. This
shows that the oligopeptides in gas phase undergo strong

kET ) 2π
p

VDA
2 1

√4πλkBT
exp (-(λ + ∆Go)2

4λkBT ) (1)

VDA )
∆E12|µ12|

|µD - µA|
(2)
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conformational changes and even collapse, bringing the two
tryptophans in very close vicinity to each other during the
MD. The oligopeptides simulated in solvent also undergo
conformational changes but not as extreme and quick as those
in gas phase, also they stay more craned and never collapse.

Electronic Couplings. We calculated the bridge-mediated
electronic coupling between the donor and acceptor for every
single snapshot as denoted above in eq 2 with parameters
derived from INDO/S calculations on the three different
trajectory types mentioned above: gas phase, solvated-
conformation-only, and solvated. For direct comparison we
also calculated coupling values in HF level of theory for
solvated Trp-(Pro)n-Trp with n ) 3 and 6 with and without
the waters included as point charges. All rms VDA values
are shown in Table 1. The data shows that there is no
significant difference between INDO/S and HF indicating
the high accuracy of the semiempirical INDO/S method in
the calculation of electronic couplings. We also included
coupling values calculated for the 30 ns solvated-conforma-
tion-only trajectory on Trp-(Pro)4-Trp, having a mean
coupling value of 2.42 × 10-5 eV (GMH). This value differs
only marginally from the mean coupling value derived from
the 10 ns trajectory, being 3.02 × 10-5 eV, indicating that
a sample size of 10 000 snapshots is sufficient for electronic
coupling calculations of the applied oligoproline systems.
Further cross checking also revealed excellent agreement
between VDA computed by GMH and VDA computed with
charge fragment difference method (FCM).47 Figure 3 shows
the rms VDA (GMH) plotted against mean dDA of the
respective trajectories. It can be seen that there is an
increasing gap between the coupling values calculated for
the oligopeptides simulated in gas phase and those simulated
in solvent. Figure 3 points out that these differences are not
only based upon longer mean dDA within the solvated
trajectories but also rely on further conformational effects
of the solvent, which becomes larger with increasing n. There
is no significant difference between rms VDA computed from
solvated oligopeptides including or excluding the waters
within INDO/S calculations, which points out that the
electronic properties of the water molecules do not contribute
to the coupling of the two tryptophans. Therefore, we will

only focus on oligopeptides simulated in gas phase as well
as in solvent, omitting the waters within the INDO/S
calculations (solvated-conformation-only) in the following
analyses.

Gated/Nongated Mechanism. It is known from the
literature that electronic coupling can strongly depend on
the conformation of the system.52 In the so-called confor-
mationally gated electron transfer, the charge is not gradually
transferred from the donor to the acceptor instead there is a
sudden jump enhanced by favorable conformations with high
electronic coupling between donor and acceptor. Tracking
the rate of conformational gating of the electron transfer in
the different oligoproline systems, we plotted the distributions
of the data by histograms of V2

DA. The data is sorted and
clustered by number of standard deviations above the total
mean value of V2

DA, called z-score. For each cluster, we then
plotted the fraction of mean V2

DA given by its data points
against its z-score. Values of coupling being higher than 100
times the standard deviation are accumulated into the last
cluster. The results for gas-phase trajectories are given in
Figure 4. Here, the plots show a trend of increasing
conformational gating with increasing number of prolines.
As already discussed above, with growing number of bridge
prolines, the mean distance between donor and acceptor dDA

becomes larger as well (shown in Figure 2). Thus, the
coupling values associated with the conformations around
the mean distance value decrease significantly. The dashed
lines in Figure 2 also indicate the large mobility for the gas-
phase systems. For any number of bridge prolines, we find
few snapshots with very short dDA, associated with high
coupling values. The results indicate that the contribution
of these few snapshots to the mean value increases with the
number of prolines, establishing a gated mechanism for n >
2. A closer inspection at this n ) 3 transition point indicates
a critical mean distance around ∼15 Å. If a system with
this mean value is capable of visiting conformations with
dDA ∼7 Å, then the overall ET mechanism might be gated.

The results for the solvated trajectories are given in Figure
5. As expected, the overall results for the electron transfer
in presence of water shows a nongated mechanism; only Pro2
lies on the border of conformational gating. This result can
be rationalized in terms of the mean and extreme donor-
acceptor distance observations deduced in the gas-phase
studies. As seen in Figure 2, in the presence of water the
extreme (lower) donor-acceptor distances are much higher
than in gas phase for each trajectory. Only in the case of
Pro2 we observe mean distances ∼15 Å together with low
extreme dDA values close to 7 Å.

Direct/Bridge-Mediated Coupling. We also calculated
the direct coupling between donor and acceptor, skipping
the bridging prolines within the INDO/S calculations. From
estimating |µD - µA| through edDA in eq 2, we know that
direct coupling is inversely proportional to dDA. Hence, we
expect decreasing direct coupling values for oligopeptide
systems with increasing n due to increasing mean dDA. Figure
6 shows both bridge-mediated coupling (solid lines) as well
as direct coupling (dashed lines) from gas phase (black) and
solvated-conformation-only (red) plotted against respective
dDA. In gas phase, direct couplings are essentially the same

Figure 2. Donor-acceptor distance dDA in Å for 10 ns
trajectory of oligopeptides in gas phase (green) and solvent
(yellow). dDA of Pro4 in solvent for 30 ns trajectory is indicated
with an asterisk. Black bar shows mean value, box captures
values between -σ and +σ and dashed lines indicate
minimum and maximum values of respective distribution.
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as bridge-mediated couplings, which can be explained by
conformational gating. As described above, in gas phase only
conformations of very short dDA contribute to the mean
coupling VDA. Here, direct couplings between donor and
acceptor are also high, consequently summing up to equal
mean VDA. Direct coupling values calculated on solvent
trajectories show expected behavior, being much lower than
bridge-mediated coupling values. Here, in contrast to the gas
phase, mean dDA and also lower extreme dDA are increasing
with n and thus direct couplings drop significantly because
of their inverse proportionality to distance. Equal direct and
bridge-mediated couplings of trajectories with n ) 1 or 2
are based on few snapshots of low dDA having also high direct
coupling between donor and acceptor hence contributing
most of mean dDA.

Conformational Analysis. We extracted additional con-
formational parameters from the trajectories for further
analysis on their influence on the coupling. Therefore, we
split the oligopeptides into separate groups for every tryp-
tophan and π-system within the oligopeptide chain. For the
tryptophans, we take the middle of bond CD2-CE2 as center
M of the plane given by the aromatic ring system. For the
π-systems, we take atom C as the center of the plane given
by the carboxyl group and its neighbored atoms. Between
two planes, we define the distance d as the Euclidean distance
between their centers, the angle p as the inner angle between
the two normal vectors tracking the planarity of the two
planes, and finally position angle r as the minimum of the

angle between normal vector of the first plane and center of
the second plane and vice versa to distinguish planes lying
on top of each other from planes being next to each other.
Figure 7 depicts d, p, and r between the two tryptophans in
Trp-(Pro)2-Trp. We extracted d, p, and r between all adjacent
groups as well as between both tryptophans. Here, donor is
denoted by D, the acceptor is denoted by A, and the
π-systems are counted in ascending order starting at 1 being
next to the donor.

We applied PLS-R on all snapshots in gas phase as well
as solvated-conformation-only trajectories to analyze the
impact of the different conformational parameters on the
coupling. Data matrix X is given by derived conformational
parameters d, p, and r and Y is V2

DA for each respective
trajectory. For normalization, we applied UV scaling on X,
assuming a normal distribution, and log10 on Y due to its
large range. In general, the PLS-R models for the oligopep-
tide systems in gas phase have good quality with cumulative
Q2 values ranging from 0.34 for Trp-(Pro)6-Trp to 0.53 for
Trp-(Pro)2-Trp. The cumulative Q2 of the PLS-R models
for oligopeptides in solvated-conformation-only trajectory are
lower, ranging from only 0.05 for Trp-(Pro5)-Trp to 0.51
for Trp-(Pro)1-Trp. All models have a maximum of only
three principle components (PCs).

The analysis of PLS-R results is based on outcomes of all
models from which we show resulting score and loading plots
of Trp-(Pro)3-Trp in gas phase (figure 8) as well as Trp-
(Pro)3-Trp in solvated-conformation-only (figure 9) as
examples. All other PLS-R results can be found in the
Supporting Information. Within the score plots, green
indicates snapshots with low, yellow medium, and red high
coupling values. In all PCs of all models in gas phase, the
donor-acceptor distance dDA clearly has the highest loading
coefficient, indicated by red bar in Figure 8, meaning that it
has the highest influence on the coupling. Results of PLS-R
analyses on oligopeptide systems modeled in solvent are not
as predictive as those from models in gas phase, indicated
by their lower cumulative Q2 values. Overall, they show
different behavior from those modeled in gas phase. Within
the solvated models, the parameter of highest influence on
the coupling V2

DA is not only dDA but, with equally high
impact, also dD-π1 and rD-π1 (red bars in Figure 9). Addition-
ally, their loading stays high in PC2 and PC3. Planarity
angles p and distances d between the bridging π-systems do
not show any influence on the coupling values within the
solvent models.

Table 1. Rms VDA Values in eV Calculated for Oligopeptide Systems with the INDO/S and HF Method

gas phase solvated-conf.-only solvated

prolines method GMH FCM GHM FCM GHM FCM

1 INDO/S 2.18 × 10-2 2.17 × 10-2 1.95 × 10-2 1.94 × 10-2 1.95 × 10-2 1.94 × 10-2

2 INDO/S 9.74 × 10-3 9.68 × 10-3 1.47 × 10-3 1.46 × 10-3 1.51 × 10-3 1.46 × 10-3

3 INDO/S 1.95 × 10-3 1.94 × 10-3 1.19 × 10-4 1.19 × 10-4 1.04 × 10-4 1.19 × 10-4

HF 1.61 × 10-4 1.61 × 10-4 1.49 × 10-4 1.51 × 10-4

4 INDO/S 1.16 × 10-3 1.16 × 10-3 3.02 × 10-5 3.03 × 10-5 2.78 × 10-5 2.79 × 10-5

4 (30 ns) INDO/S 2.42 × 10-5 2.44 × 10-5

5 INDO/S 3.79 × 10-4 3.79 × 10-4 4.36 × 10-8 4.37 × 10-8 4.39 × 10-8

6 INDO/S 1.25 × 10-4 1.25 × 10-4 7.36 × 10-8 7.37 × 10-8 6.58 × 10-8

HF 2.48 × 10-7 2.32 × 10-7 7.25 × 10-8

Figure 3. Rms VDA (GMH) values plotted against mean
donor-acceptor distance dDA in trajectories of type gas phase
(black), solvated-conformation-only (red) and solvated (green).
Rms VDA from HF calculations are given for Trp-(Pro)3-Trp
and Trp-(Pro)6-Trp for solvated-conformation-only (red tri-
angle) and solvated (green square) trajectories.
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Translating the influence of the previously detected con-
formational parameters on the coupling into concrete values
derived from the actual snapshots, we calculated the mean
values of these parameters extracted from two groups. The

first group is snapshots having high coupling, meaning V2(x)
> mean V2

DA, and the second group is the 1000 snapshots
lowest in coupling. Figure 10 gives the box plot of significant
conformational parameters derived from both groups (high
and low coupling) for gas phase as well as solvated-
conformation-only trajectories.

Figure 4. Fraction of mean V 2
DA given by data cluster i (y axes) against z-score of i on V 2

DA (x axes) for trajectories in gas
phase. Coupling values higher than 100 z-scores are accumulated into the last cluster.

Figure 5. Fraction of mean V 2
DA given by data cluster i (y axes) against z-score of i on V 2

DA (x axes) for solvated-conformation-
only trajectories. Coupling values higher than 100 z-scores are accumulated into last cluster.

Figure6. RmsVDAvaluesplottedagainstmeandonor-acceptor
distance dDA in gas phase (black) and solvated-conformation-
only (red) trajectories. Solid lines indicate bridge mediated
couplings and dashed lines only direct couplings between
donor and acceptor.

Figure 7. Scheme of conformational parameters distance d
and angles p and r, derived from 3D oligopeptide structure.
See text for more details.
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In general, there is a clear correlation of shorter distances
with high coupling in systems derived from gas-phase
simulations as well as in solvated systems. This effect is very
strong for the donor-acceptor distance dDA in gas phase.
Here, the average values are 5.99 Å for high coupling against
17.48 Å for low coupling. This trend is less clear but still
discriminative for the solvated systems where the average
dDA for high coupling is 16.43 Å and the average dDA for
low coupling is 19.60 Å. The strong loading coefficient of
stacking angles rD-π1 in the PLS-R analysis becomes clear
when we examine the average values of the two groups. At
this point, higher coupling correlates with a smaller angle.

Rate Comparison with Experiments. Isied et al., working
on oligoproline peptides with Ruthenium based donors and
acceptors, showed that the electron transfer mechanism
changes from a predominantly electron superexchange to a
predominantly electron hopping when dDA exceeds about 20
Å.13 Using the parameters from Isied et al. for the reorga-
nization energy, we have computed the ET rates, shown in
Figure 11. Analyzing the solvated-conformation-only (red)
and solvated (green) plots it seems clear that the linear
behavior is broken at dDA ) ∼20 Å. At this point, the
superexchange ET rate is drastically reduced. These results
confirm a possible change in mechanism from superexchange
to electron hopping. Future work will address the electron
hopping mechanism to confirm this point as the presented
study exclusively investigates the superexchange electron
transfer mechanism.

IV. Conclusions

We have produced a comprehensive study of hole electron
transfer in oligoproline peptides of variable length with
tryptophan-based donors and acceptors. We have performed
extensive molecular dynamics studies and computed the
electronic coupling by means of INDO/S semiempirical
method and ab initio Hartree-Fock methods (for n ) 3 and
6). The HF calculations sum up to 40 000 single-point

Figure 8. Score and loading plots of PLS-R analysis on Trp-
(Pro)3-Trp in gas phase trajectory.

Figure 9. Score and loading plots of PLS-R analysis on Trp-
(Pro)3-Trp in solvated-conformation-only trajectory.

Figure 10. Box plot of conformational parameters extracted
from high and low coupling groups of gas-phase and solvated-
conformation-only trajectories. Distances d measured in Å,
angle r in degrees. Color code: red ) high coupling and green
) low coupling.
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calculations from which we found good agreement between
results of semiempirical INDO/S and ab initio HF in the
oligopeptides we have investigated. In gas phase, all oli-
gopeptide systems undergo strong conformational changes
bringing the two tryptophans in close vicinity, which results
in a gated electron transfer mechanism. The dynamics of
the oligopeptides in water do not allow for such a close
proximity between the donor and acceptor as the number of
bridge tryptophans increases, establishing a nongated mech-
anism where the bridging prolines play a major role in
mediating the electronic coupling.

The agreement between the solvated-conformation-only
and the solvated results indicate that the water effects are
mainly in restricting the conformational space rather than in
electronic effects. Whereas the excitation energy E12 differs
when explicitly adding the water point charges in the one
electron Hamiltonian, there is not a large effect of E12 on
the electronic coupling, as only (diabiatic) orbital overlap
accounts. Finally, in agreement with experimental data, our
results point to a dDA ∼20 Å as a possible point for
superexchange to hopping mechanism transition.
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Abstract: We introduce a general optimization algorithm based on an interpolation of property
values on a hypercube. Each vertex of the hypercube represents a molecule, while the interior
of the interpolation represents a virtual superposition (“alchemical” mutation) of molecules. The
resultant algorithm is similar to branch-and-bound/tree-search methods. We apply the algorithm
to the optimization of the first electronic hyperpolarizability for several tolane libraries. The search
includes structural and conformational information. Geometries were optimized using the AM1
Hamiltonian, and first hyperpolarizabilities were computed using the INDO/S method. Even for
small libraries, a significant improvement of the hyperpolarizability, up to a factor of ca. 4, was
achieved. The algorithm was validated for efficiency and reproduced known experimental results.
The algorithm converges to a local optimum at a computational cost on the order of the logarithm
of the library size, making large libraries accessible. For larger libraries, the improvement was
accomplished by performing electronic structure calculations on less than 0.01% of the
compounds in the larger libraries. Alternation of electron donating and accepting groups in the
tolane scaffold was found to produce candidates with large hyperpolarizabilities consistently.

1. Introduction

In recent years, organic molecules have garnered increasing
attention as components of high-hyperpolarizability materials,
partly due to the variety of synthetically accessible com-
pounds, cost, and ease of processing.1,2 Applications for
materials with high hyperpolarizabilities are found in tele-
communication and optics.3 The dominant nonlinear response
of organic molecules often finds its origin in the conjugated
π-system, which facilitates the electronic polarizability. The
design of such molecules in silico is complicated by the fact
that chemical space, even constrained to smaller organic
compounds, is combinatorially complex. The number of
organic molecules of medium size is estimated4 to be on
the order of 10200. Enumeration is therefore unfeasibly costly,

and other methods for property optimization need to be
developed. Including conformational searching further com-
plicates molecular design.

Methods for optimization in discrete spaces have been
studied extensively and recently reviewed.5 Optimization
methods include integer programming, as in branch-and-
bound techniques (including dead-end elimination6), simu-
lated annealing,7 and genetic algorithms.8 These algorithms
have found renewed interest and application in molecular
and materials design.9–12 Recently, new approaches have
been explored to embed discrete chemical space in continu-
ous spaces to take advantage of continuous optimization
techniques. These include, in particular, activities in our
group on the linear combination of atomic potentials
(LCAP)13–15 method and the approach of von Lilienfeld,16–19

using a grand-canonical ensemble strategy. Here, we further
employ continuous optimization methods aimed at discover-
ing structures with optimal properties.
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The problem of discrete optimization in chemical space
can be tackled by embedding the discrete space in a virtual
continuous space, parametrized by a set of continuous
variables. This strategy establishes a continuous path from
one molecule to another. Such a space can be constructed
by defining molecules as a succession of gradual replace-
ments of an atom or molecular fragment by another. These
fragment or atom placements may be arbitrary, but the
satisfaction of valency rules may be desirable. For example,
a hydrogen in CH4 might be replaced by a halogen or a
methyl group, each corresponding to a specific geometry (or
ensemble of geometries), energy(ies), and property value(s).
It is possible to construct a continuous transition between
Hamiltonians for the chemical structures as was done for
LCAP.13 Equation 1 illustrates the procedure.

Each Hamiltonian Hi acts only on its own molecular
subspace Ωi, and H acts on the direct sum of these spaces
xiΩi. In eq 1, the summation constraint implies the mutual
exclusivity of the groups in the library (e.g., in the above
example, as the hydrogen component increases toward 1,
the halogen component decreases toward 0). In this approach,
the groups are still linked through the wave function.
Therefore, it is possible that all optima are at nonphysical
configurations (e.g., half hydrogen and half halogen in the
same location). Starting with allowed values of λi (0 e λi e
1), it is possible to compute the numerical derivative of a
property P. We now explore the application of this idea for
discrete optimization of the first hyperpolarizability using
differences of property values to replace continuous gradients.

2. Methods

Linear Interpolation of Discrete Spaces. Analogous to
LCAP optimization, any property can in principle be
interpolated in a virtual continuous space. We call the
interpolated space “virtual” since noninteger λi-values cor-
respond to intermediate or “alchemical” species. In general,
given a library with N molecules with property values Ps

for molecule s, log2 N (the smallest integer larger than log2

N) variables may be used to embed the discrete library in
the continuous space. In LCAP, intermediate species contain
contributions of each subspecies as well as cross-terms that
arise from coupling Via the wave function, which is one
source of “virtual” optima. The values for intermediate
species in this scheme are not contaminated by these cross-
terms and depend only on the values at the real molecules.
For example, assume a library consisting of methane, ethane,
propane, and butane in exactly that order (see Figure 1). It
is possible to interpolate among the 4 molecules using the
parameters λ0 and λ1. A (quadratic) polynomial interpolating
the ground state energies (for example) is the following:

This energy equation has a well-defined minimum when
constrained to the square domain. Due to the domain
constraints (only values on the square are allowed), the
components of the gradient at the vertices pointing outside
the square have to be dropped in pure gradient methods. At
the minimum the gradient g points outside the square of
definition for all components and thus is zero in the
function’s domain. Similarly, the Hessian J decomposes into
normals, which point into the square or away. Again the
constraints mandate that components of ∆x )-J-1g pointing
out of the square are dropped for methods depending on ∆x.
Interpolation using a single variable for this set of compounds
would produce a third degree polynomial, but homogeneous
solutions to third order polynomials are not trivial, and the
optimum is not guaranteed to correspond to a true molecule,
i.e., λ ∈ {0, 1, 2, 3}.

The preceding example highlights the dependence of the
property polynomial on the ordering of the molecules.
Generalization of the example to a library L of size N leads
to eqs 3 and 4. Equation 3 describes the bit-string (binary)
representation of a number s with bit s(i) at the ith position.

Equation 4 defines the property interpolation P̃ based on
the bit-strings. We differentiate between the interpolation
function P̃ and the set of discrete property values Ps to
emphasize the domain of definition. The former is defined
on the “virtual”, continuous hypercube ([0, 1]log2N), while
the latter is defined on the discrete space L. This polynomial
is continuous on the hypercube and has order log2 N and
log2 N variables.

Derivatives of P̃. In order to use conventional optimization
algorithms on continuous spaces, it is necessary to find the
derivatives of P̃.

Equations 5 and 6 show first and second order analytical
derivatives of P̃. The derivative of P̃ at λ corresponding to

H(λ) ) ∑
i

λiHi, ∑
i

λi ) 1, 0 e λi e 1

(1)

E(λ0, λ1) ) E0(1 - λ0)(1 - λ1) + E1λ0(1 - λ1) +
E2(1 - λ0)λ1 + E3λ0λ1

(2)

Figure 1. Simple example for interpolation. The bits λ1λ0

represent the molecule number s ) 2λ1 + λ0 in the binary
system.

s ) ∑
i)0

log2 N

s(i) × 2i, s(i) ∈ {0, 1} (3)

P̃(λ) ) ∑
s)0

N-1

Ps ∏
i)0

log2 N-1

((1 - λi)
s(i)λi

1-s(i)) (4)

∂P̃
∂λj

(λ) ) ∑
s)0

N-1

Ps(-1)s(j) ∏
b*j

log2 N

((1 - λb)
s(b)λb

1-s(b))

(5)

∂
2P̃

∂λk∂λl
(λ) ) ∑

s)0

N-1

Ps(-1)s(k)+s(l) ∏
b∉{k,l}

log2 N

((1 - λb)
s(b)λb

1-s(b))

(6)
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the molecule with number s in the library L can be computed
from nearest bit-string neighbors (see eqs 7-10). s(j) denotes
the neighbor which differs only by the jth bit, while s(k, l)

identifies the neighbor which differs only in the kth and lth
bits.

The highly nonlinear, but continuous, function P̃ allows
the development of optimization methods by substituting
derivatives by finite differences in continuous optimization
methods. In this case, the analytical property derivatives for
a molecule (i.e., at the vertices of the hypercube, where λi

) s(i) for vertex s) are simple (finite) property value
differences, unlike in LCAP. The derivatives of LCAP need
not be on straight lines pointing from one physical (non-
“alchemical”) molecule to another, although the property
values of each real molecule are the same for either
optimization scheme. Formally, P̃ is very similar to the
Bayesian clustering approach, but no stochastic interpretation
is needed in this case.30 This framework also unifies some
previous approaches.15,20 Balamurugan et al.20 have applied
a best-first approach (BFA) to chemical optimization, which
chooses the first substituent at a substitution site that
improves the property. This method resembles the optimiza-
tion algorithm employed in the latter sections in that the
property improves at every step, but BFA uses the property
value instead of the derivative. Keinan et al.15 have used an
algorithm which represents the steepest-descent method
applied to P̃, as well as a line-search in which the direction
of largest change is exclusively used. Unlike the other
algorithms described, the steepest-descent method potentially
jumps through the hypercube. While the following algorithm
and Keinan’s line-search both traverse the edges of the
hypercube constantly improving the property value, Keinan
computes all single substitutions at every step.

Comparison with Dead-End Elimination. To compare
our approach (eq 4) with dead-end-elimination algorithms
(DEE), we consider the minimization of a pairwise additive
property function comprised of single-parameter contribu-
tions Pi

(µ) acting on site i with occupation µ and double-
parameter contributions Pij

(µ,ν) acting on sites i and j with
occupation µ and ν (eq 11).

Collecting all terms, we find a quadratic dependence of P̃
on the pairwise terms Pij with the parameters λi (eq 12).
Consequently, the derivatives are linear with respect to λi

(eq 13).

From eq 13, a pruning argument for minimization can be
derived, which is equivalent to the first-order DEE pruning
rule applied to the special case of only two options at each
site. Whenever the gradient with respect to a parameter λi is
negative for all values of λ in the hypercube, then λi ) 1
minimizes P̃. This condition is precisely met when inequality
14 is fulfilled.

Conversely, a positive gradient (eq 15) implies that λi )
0 minimizes P̃. Thus, it has been demonstrated that P̃
naturally leads to DEE-like algorithms.

2.1. Library Construction and Ordering. The choice
of enumeration of the library L determines the assignment
of specific molecules to λ. Consequently, this choice greatly
influences the characteristics of P̃, such as its smoothness.
Considering the example of Figure 1, the energy rises in all
directions only for C4H10. But if CH4 and C3H8 exchange
places in the order, then going from C3H8 to either of its
two neighbors (C2H6 or CH4) increases the energy, so that a
“hurdle” has to be overcome to reach C4H10. Just exchanging
the position of two neighboring molecules in the library
changes the sign of the derivative at the corresponding λ. If
the Hessian of the pairwise-additive property function is
positive-semidefinite, the corresponding P̃ is convex and
optimization quickly reaches the global minimum. Using
steepest gradient or Newton-Raphson algorithms locates
property extrema (minima). It is beneficial to find an ordering
of the library that produces a convex property surface. The
linearity in each parameter λi implies convexity of P̃ with
respect to that parameter.

Assuming that molecules of similar structure have similar
properties, a measure of similarity may be used to decrease
the ruggedness/convexity of P̃. One choice to facilitate
smooth property surfaces is the enumeration of molecules

s(j) ) s + (-1)s(j) × 2j (7)

s(k,l) ) s + (-1)s(k) × 2k + (-1)s(l) × 2l, k * l
(8)

λi ) s(i),
∂P̃
∂λj

(λ) ) (-1)s(j)(Ps - Ps(j)) (9)

∂
2P̃

∂λk∂λl
(λ) ) (-1)s(k)(-1)s(l)(Ps - Ps(k) - Ps(l) + Ps(k,l)),

l * k, λi ) s(i) (10)

Ps ) ∑
i

Pi
(s(i)) + ∑

i<j

Pij
(s(i),s(j))

(11)

P̃(λ) ) ∑
i

(Pi
(0)λi + Pi

(1)(1 - λi)) +

∑
i<j

(Pij
(0,0)λiλj + Pij

(1,0)(1 - λi)λj +

Pij
(0,1)λi(1 - λj) + Pij

(1,1)(1 - λi)(1 - λj))

(12)

∂P̃
∂λi

) Pi
(0) - Pi

(1) + ∑
j*i

([Pij
(0,0) - Pij

(1,0)]λj +

[Pij
(0,1) - Pij

(1,1)](1 - λj)) (13)

∂P̃
∂λi

< 0 S Pi
(0) - Pi

(1) <

∑
j*i

min{Pij
(1,0) - Pij

(0,0), Pij
(1,1) - Pij

(0,1)} (14)

∂P̃
∂λi

> 0 S Pi
(0) - Pi

(1) >

∑
j*i

max{Pij
(1,0) - Pij

(0,0), Pij
(1,1) - Pij

(0,1)} (15)
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by subsequent substitutions from a starting compound (see
Figure 2). Returning to the example in Figure 1, Y contains
the Z-matrix of CH3 with the connectivity information for
X1, which consists of the Z-matrix of H and CH2X1,1 and
connectivity information for X1,1 (level 1), which contains
H and CH2X2,1 (level 2), which finally contains H and CH3

(level 3). Evidence provided by the LCAP approach supports
the supposition of smoothness when using substitutions.21

The substitutions may be defined recursively; therefore, each
level of a hierarchy of substitutions consists of a molecular
fragment or atom to be connected to the next higher level,
a list of substitution sites, and a set of subsequent levels for
each site (see Figure 2). Each element of the set of
subsequent levels is identified with a coefficient between 0
and 1, and the sum of these coefficients for each set must
equal 1 (see eq 16). For a case in which more than two
possible substitutions are available at a site, the bit-string
representation must be extended to allow mixed numeric
bases bk. The general properties discussed in the preceding
sections remain unchanged in this alternative interpolation
(eq 18). The advantage of this description is the increase of
convexity throughout a single substitution site.

Inclusion of Multiple Conformational States. For each
molecule, it is important to find low-energy conformers for
the property optimization to be physically meaningful. For
each molecule in the molecular library, another optimization
can be started with the (second) library consisting of the

corresponding conformers. Each dihedral degree of freedom
can be treated as a substitution site at the lowest level with
a number of rotations as possible substitutions, as is
commonly done in conformational searches.6,22 In this
manner, the conformational search can be introduced as the
lowest level in the previously described substitution hierar-
chy. Thus, the conformational search precedes property
computation in property optimizations. More general con-
straints on the optimal molecule can be introduced Via
alternate methods, like Lagrange multipliers or stochastic
algorithms. Lagrange multipliers can be implemented using
(soft) penalty functions with weightings that increase through-
out the optimization.

Algorithm. Here, a line search algorithm is used; in
particular, each parameter λi is followed to a minimum in
that direction before varying the next parameter λi+1.
Maximization Via this algorithm can be achieved for instance
by minimizing the negative objective function. This line
search algorithm is an implicit branch-and-bound algorithm.
A flowchart for the employed recursive algorithm appears
in Figure 3, and application of the algorithm to a small
example will be discussed in section 3 under the subsection
Framework A (see also the accompanying Figure 6).

Since P̃(λ) is locally convex, this algorithm converges
locally. The line-search steps 4-7 in Figure 3 correspond
to a linear tree search or branch-and-bound algorithm. The
computational complexity is on the order O(log N) in the
library size N due to the linear dependence on the log N
variables. In contrast to conventional branch-and-bound
methods, no structures are explicitly excluded from the search
space. Since each molecule chosen in step 8 in Figure 3 is
strictly better in the sense of property optimization than its
predecessor, the algorithm quickly converges to a local
property value minimum in the library.20

All property minima for this algorithm are minima for the
steepest-descent derived method and Vice Versa. This algo-
rithm traverses the library in a smoother fashion compared
to the steepest-descent derived method, successfully em-
ployed by Keinan et al.,15 because the molecules are

Figure 2. Substitution pattern hierarchy. Y contains a Z-matrix that has several open “valences”. The first can be filled with
substituents found in X1, which are connected to substituents found in X2, etc. The second is filled from Xm in the same manner.
The Xi themselves are taken from a set of substitution patterns of the same kind as Y. Each instance is anchored to Y at the
appropriate valence. The substitutions are terminated by Z-matrices that have no open valences.

∑
j

λij ) 1, j ∈ {0, ..., bi - 1} (16)

s ) ∑
i

( ∏
k)0

i-1

bk) ∑
j∈bi

s(i, j) × j, s(i, j) ∈ {0, 1},

∑
j

s(i, j) ) 1 (17)

P̃({λij}j∈{0,...,bi},i) ) ∑
s)0

N-1

Ps( ∏
i

∏
j)0

bi-1

λij
s(i,j)) (18)

3324 J. Chem. Theory Comput., Vol. 5, No. 12, 2009 Rinderspacher et al.



traversed variationally by single substitutions. While on one
hand the steepest-descent based approach can sidestep
barriers in the immediate vicinity efficiently, due to the
simultaneous change of potentially several bits, the varia-
tional nature of this line search guarantees convergence,
which is particularly useful on rugged property surfaces.

For the sake of computational accessibility, all geometries
were optimized using the semiempirical Austin model 1
(AM1) method as implemented in Gaussian03.23 The static
electronic hyperpolarizability was computed using the
INDO/S method as implemented in CNDO by Reimers et
al.24 using the sum-overstates expression in eq 19. The
configuration interaction (CI) space was spanned by up to
100 unoccupied or occupied orbitals to accommodate for the
large number of electrons in some of the investigated systems

where E0ν is the excitation energy from the ground state to
the νth excited state, �b is the static electronic hyperpolariz-
ability with components �i and corresponding hyperpolar-
izability tensor elements �ijk, �0 is the isotropic hyperpolar-
izability, �µ is the hyperpolarizability component in direction
of the ground state dipole moment, xb is the dipole operator
with components xi, and µb is the ground state dipole moment
with components µi.

Figures 4 and 5 summarize the tolane-based system
studies. Tolane spectroscopic properties are favorable for
applications, so their first and second hyperpolarizabilities
have been studied extensively.25,26 In addition, these struc-
tures are readily modified27 and present a large number of
possible derivatives. Tolanes therefore present a particularly
rich testbed for these optimization studies.

3. Results and Discussion

Overall, five different tolane libraries were investigated
(general structure in Figure 2). The first three sets of
molecules are optimized with respect to their static isotropic
hyperpolarizability �0 (eq 21), while the remaining sets are
optimized with respect to the component of the hyperpolar-
izability in direction of the dipole �µ (eq 21).

Framework A. Validation of the algorithm was performed
on the structure framework A in Figure 5. Figure 6 shows
the progress of the algorithm. There are 200 molecules in
this library, but hyperpolarizabilities of only 24 different
molecules were computed during the optimization, the
minimum number of molecules required for the algorithm
to finish the optimization. Regardless of the starting structure,
the algorithm consistently finishes with the global hyperpo-
larizability optimum (Figure 6), which has also been
confirmed experimentally.28 For comparison, if the library

Figure 3. Flowchart of the algorithm.

�ijk ) ∑
νκ

〈0|xi|ν〉〈ν|xj - µj|κ〉〈κ|xk|0〉
E0νE0κ

(19)

�i )
1
3 ∑

j

(�ijj + �jij + �jji) (20)

�µ ) µf

|| µf ||
· �f, �0 ) ||�f|| (21)

Figure 4. Top level of the substitution scheme (see Fig-
ure 2).
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is searched randomly, the expected number of computed
molecules before finding the global minimum is 200
molecules. If repeats are avoided, then still 101 molecules
would need to be computed on average in order to obtain
the same result.

Framework B. The static hyperpolarizability �0 of
framework B in Figure 5 optimizes to an unstable, perhaps
explosive structure with mostly nitro- and amino-substituents
(Figure 7). The final computed �0-value was 131.9 × 10-30

esu after 121 computed structures from 68 ≈ 1.7 × 106

possible molecules. Additionally, conformational analysis
was performed. CHO and OH were allowed two possible
orientations in the plane of the tolane. For CH2OH and
CH2NH2, 3-fold rotation around the C-O and C-N bonds,
respectively, was included, while only 2-fold rotations around
the bonds connecting to the tolane framework were allowed.

Framework C-1. The static hyperpolarizability for com-
pounds in C-1 of Figure 5 was optimized starting from three
different randomly chosen initial structures. A total of 78 ≈
5.8 × 106 possible molecules exist in this family. Confor-

Figure 5. Tolane libraries investigated. Terminology as in Figure 2 with the top level as in Figure 4.

Figure 6. Progress of the optimization algorithm. The steps refer to the steps in Figure 3. The number of molecules indicated
is the number of previously unvisited molecules for which the property is computed in performing the steps. Carbons are marked
in orange, hydrogens in white, oxygens in red, and nitrogens in light blue.

Figure 7. Final structure of framework B. Carbons are
marked in orange, hydrogens in white, oxygens in red, and
nitrogens in light blue.
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mational considerations were treated as in framework B. Two
of the three runs converged to the same structure (�0 ) 214.6
× 10-30 esu), while the third converged to a second structure
with comparable hyperpolarizability (�0 ) 216.9 × 10-30

esu, see Tables 1 and 2). All three runs finished after
computing less than 0.1% of all possible molecules and
achieved 3- to 4-fold improvements of the hyperpolarizabil-
ity. Comparing the two structures, we see some common
motifs emerge: the variable fragments X3,3 and X3,4 contain
nitro-groups, while X6,3 and X6,4 are occupied by amino-
groups. Furthermore, positions X2 and X4 are occupied by
electron acceptors, and sites X1 and X5 are occupied by
electron donors. It is notable that not all positions are
occupied by the “strongest” donors or acceptors in the
substitution set, i.e., NH2 and NO2, respectively.

Framework C-2. Halogen substituents do not necessitate
extensive conformational analysis, so they allow the evalu-
ation of the optimization method without added constraints.
The structures C-2 in Figure 5 were optimized for the
hyperpolarizability in the direction of the dipole moment (�µ,
see eq 21). Entries a and c in Table 3 show the results of
two optimizations of framework C-2 in Figure 5 starting from
the same initial structure with all substitutions set to
hydrogens. In this case, convergence to a hyperpolarizability
maximum is confirmed to be logarithmic in the library size;
i.e., squaring the library size from 256 to 65536 leads to
roughly twice the number of computed molecules.

The stability of the optimization procedure was tested by
constraining substitutions to be symmetric with respect to
the mirror plane perpendicular to the plane of the backbone
(runs (c) and (d) in Table 3), as well as starting from different
initial structures: runs (a) and (c) were started with all
substituents set to hydrogen, while run (b) starts from X6,3

) Br and X3,4 ) F, and run (d) starts from X6,3 ) X6,4 ) Br
and X3,3 ) X3,4 ) F. The hyperpolarizabilities of the initial
structures were within 4 units of 50 × 10-30 esu. Since the
procedure is not a global optimization algorithm, it is possible
to end at different local maxima, here each run ended in a
different structure with corresponding hyperpolarizabilities
(�µ/10-30 esu ) 84.1, 77.4, 83.5, 83.2, respectively, see Table
Table 3). Nonetheless, the optimizations lead to significant
and comparable improvements between runs. The found
maxima all place bromine in the X6,3 and X6,4 positions,
implying that a large fraction of the gain in �µ arises from
bromine to amino charge transfer interactions.

Framework C-3. In combination with parts of libraries
of C-1 and C-2 in Figure 5, structures C-3 in Figure 5 were
subjected to optimization of the static hyperpolarizability in

Table 1. Starting and Final Structures of Framework C-1 of Figure 5a

a Carbons are marked in orange, hydrogens in white, oxygens in red, and nitrogens in light blue.

Table 2. Starting and Final Hyperpolarizabilities and
Number of Computed Molecules for Framework C-1 in
Figure 5a

run initial �0/10-30 esu final �0/10-30 esu molecules computed

1 55.1 214.6 157
2 71.0 214.6 109
3 49.9 216.9 169

a See also Table 1.

Table 3. Optimized Structures for Frameworks C-2 in
Figure 5

compound
�µ/10-30

esu
molecules
computed

library
size

a X1, X5, X3,3, X3,4 ) H
X6,3, X6,4 ) Br
X2 ) C1
X4 ) F

84.1 67 65536

b X1, X2, X4, X5, X3,3, X3,4 ) H
X6,3, X6,4 ) Br

77.4 69 65536

c X1, X5 ) Br
X3,3, X3,4 ) H
X6,3, X6,4 ) Br
X2, X4 ) F

83.5 28 256

d X1, X5, X3,3, X3,4 ) H
X6,3, X6,4 ) Br
X2, X4 ) Br

83.2 28 256
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the direction of the dipole moment (�µ). Four optimizations
from different starting configurations were performed (see
Tables 4 and 5 for results). The “unbiased” first optimization
leads to a 5-fold increase in �µ (37.0 f 181.5 × 10-30 esu).
The final structure (see Table 4) indeed is a mixture of the
results for C-1 and C-2 in Figure 5. The second optimization
was started with a structure concentrating equal numbers of
donors on one side and acceptors on the other, analogous to
the final structure of framework B in Figure 5. This starting
structure exhibited only a marginally larger hyperpolariz-
ability (55.6 × 10-30 esu) than the “unbiased” starting
structure, but optimized to an alternating donor-acceptor
arrangement (171.6 × 10-30 esu) that failed to reach the
optimum found in the first optimization. The low hyperpo-
larizability is presumably due to the benzene rings twisting
out of plane and reducing conjugation.

A biased starting point, with alternating donor and acceptor
groups, leads to a marginally increased final hyperpolariz-
ability (191.6 × 10-30) over the first optimization. The
attempt to exceed this value by substituting the “strongest”
electron donors and acceptors, NH2 and NO2, fails despite
the fact that this structure is indeed a local maximum (173.3

× 10-30 esu). All four optimization runs finish computing
less than 0.001% out of the possible 98 ≈ 4.3 × 107

molecules.

4. Summary and Conclusion

We have introduced an embedding of discrete molecular
spaces in a continuous space, similar to the embedding of
discrete Hamiltonians in LCAP.21 From the embedding, an
optimization based on differentiation in the continuous space
was developed. The embedding is based on the chemically
intuitive ordering of molecules by substitutions. Assuming
that single substitutions are small perturbations, the ordering
also increases smoothness in the resultant continuous space.
Although the framework is very general, it is limited to
properties that can be derived and computed by defining
substitution patterns as well as computational accessibility,
such as binding problems, linear spectra, or stress-strain
curves of molecules.

Table 4. Starting and Final Structures of Framework C-3 in Figure 5a

a Carbons are marked in orange, hydrogens in white, oxygens in red, nitrogens in light blue, bromine in dark red, fluorine in dark blue,
and chlorine in purple.

Table 5. Starting and Final Hyperpolarizabilities and
Number of Computed Molecules for Framework C-3 in
Figure 5a

run initial �µ/10-30 esu final �µ/10-30 esu no. comp

1 37.0 181.5 181
2 55.6 171.6 153
3 139.8 191.6 161
4 173.3 173.3 65

a See also Table 4.

Figure 8. Largest �µ structure for framework C-2 in Figure
5. Compare to entry a in Table 3. Carbons are marked in
orange, hydrogens in white, oxygens in red, nitrogens in light
blue, bromine in dark red, fluorine in dark blue, and chlorine
in purple.
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The theoretical framework transforms a discrete optimiza-
tion problem into a continuous optimization problem, which
then gives rise to a discrete optimization strategy. The
theoretical complexity of the used line-search algorithm is
O(log N) in the library size N, and applications of the
algorithm to a variety of conditions confirm the method’s
effectiveness. A design strategy for tolanes of alternating
donors and acceptors along a conjugated framework is
suggested by the optimization results. Choosing a set of initial
structures increases the likelihood of finding the global
optimum. Further applications and improvements are under
study including an extension to second-order derivative
methods, probabilistic methods29,30 and dynamic ordering
of the parameters to achieve overall convexity.
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Erratum

Efficient Diffuse Basis Sets: cc-pVxZ+ and
maug-cc-pVxZ. [J. Chem. Theory Comput. 5, 1197–
1202 (2009)]. By Ewa Papajak, Hannah R. Leverentz,
Jingjing Zheng, and Donald G. Truhlar*.

Pages 1199. Some data in Tables 3-6 are corrected. These
corrections do not change any of our discussion or conclu-
sions in the paper. In the second paragraph of Section 4,
“cc-pVDZ+” should be “cc-pVTZ+”.

Addendum. We also present here some further calcula-
tions that do not correct an error in the original article
but that provide further relevant information. In particular,
we note that the article tested the new plus basis sets for
ionization potentials, electron affinities, atomization ener-
gies, barrier heights, and basis set superposition errors.
We then presented tests of another set of basis sets, called

maug basis sets, obtained by truncating the aug basis sets
to the same size as the plus basis sets. The maug basis
sets were tested only for barrier heights and basis set
superposition errors, and we found very similar perfor-
mance to the plus basis sets. As an example of the
differences in the basis sets, diffuse functions on O in
maug-cc-pVTZ have exponential parameters of 0.07376
for s functions and 0.05974 for p; these exponential
parameters are smaller than those in the plus basis set,
where both parameters are 0.0845. The most difficult tests
of the adequacy of a scheme for diffuse basis functions
are provided by electron affinities. We have now tested
maug-cc-pVxZ against cc-pVxZ+ with both x ) D and x
) T for electron affinities, and we found better perfor-
mance with the maug basis sets for M06-2X (better on
average) and CCSD(T) (always better), especially for
systems containing oxygen atoms (and to a lesser extent
for Si- and C-), but better performance (on average)
with the plus basis set for B3LYP. However, in all 78
cases the anion energies are lower for the maug basis set
than the corresponding plus one, so the improvement of
the plus basis sets for B3LYP electron affinities is
presumably due to cancellation of basis set error with a
large error in the opposite direction from the functional
itself. Table A1 gives two additional rows for the original
Table 4 that show the mean unsigned errors in electron
affinities with two maug basis sets. The conclusion is that
anion energies and electron affinities are more sensitive
than barrier heights and basis set superposition errors to
the precise values of the diffuse exponents, and the maug
basis sets are more accurate for such calculations, probably
because the exponents were optimized for atomic anions.1
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Table 3. Mean Unsigned Errors (MUEs) (in kcal/mol) in
Ionization Potentials

B3LYP M06-2X CCSD(T)

cc-pVDZ+ 4.88 3.09 8.57
aug-cc-pVTZ 2.70

Table 4. Mean Unsigned Errors (MUEs) (in kcal/mol) in
Electron Affinities

B3LYP M06-2X CCSD(T)

cc-pVDZ 20.10
cc-pVDZ+ 3.17 2.66 9.77
aug-cc-pVDZ 2.37
cc-pVTZ 9.85
cc-pVTZ+ 1.92
aug-cc-pVTZ 1.55

Table 5. Mean Unsigned Errors Per Bond (MUEPBs) in
(kcal/mol) in Atomization Energies

B3LYP M06-2X CCSD(T)

cc-pVDZ+ 3.15 2.40 8.88

Table 6. Mean Unsigned Errors (MUEs) (in kcal/mol) in
the Barrier Heights of the DBH24/08 Database

HATBH6 NSBH6 UABH6 HTBH6 DBH24

B3LYP/cc-pVDZ+ 7.57 3.79 5.81 4.80
M06-2X/cc-pVDZ+ 2.02 1.17 1.37 1.45
CCSD(T)/cc-pVDZ+ 4.15 0.82 1.79 2.05

Table A1. Mean Unsigned Errors (MUEs) (in kcal/mol) in
Electron Affinities

B3LYP M06-2X CCSD(T)

maug-cc-pVDZ 3.19 2.46 9.41
maug-cc-pVTZ 2.49 1.57 4.88
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